# 镇江联成化学工业有限公司土壤及 地下水自行监测结果分析

江苏博越环境检测有限公司

2021 年 5月

委 托 单 位: 镇江联成化学工业有限公司

编 制 单 位: 江苏博越环境检测有限公司

法 人 代 表: 李大伟

项目负责人: 夏天

报告编制人: 夏天

江苏博越环境检有限公司

电话: 0511-85247468

传真: 0511-85247468

邮编: 212000

地址: 江苏省镇江市润州区南徐大道 101 号 3 幢第 1 至 11 层

# 目录

| 1 | 概述              | 1  |
|---|-----------------|----|
|   | 1.1 项目背景        | 1  |
|   | 1.2 监测依据        | 3  |
| 2 | 监测布点            | 5  |
|   | 2.1 点位布设        | 5  |
|   | 2.2 监测因子        | 5  |
| 3 | 样品采集、保存、流转及分析测试 | 12 |
|   | 3.1 采样前的准备      | 12 |
|   | 3.2 土壤样品采集      | 12 |
|   | 3.3 地下水样品的采集    | 13 |
|   | 3.4 样品分析        | 14 |
|   | 3.5质量控制与质量保证    | 15 |
|   | 3.6 监测设施的建设     | 17 |
|   | 3.6.1 监测井保护措施   | 17 |
| 4 | 监测结果分析          | 18 |
|   | 4.1 监测结果        | 18 |
|   | 4.2 土壤检测结果分析    | 84 |
|   | 4.3 地下水检测结果分析   | 84 |
| 5 | 结论与建议           | 86 |
|   | 5.1 结论          | 86 |
|   | 5.2 建议          | 86 |

## 1 概述

### 1.1 项目背景

镇江联成化学工业有限公司是由MAGICPROPSINVESTMENT LTD.于2002年在镇江新区化学工业园区独资兴建的外资企业。公司一直以来重视并致力于新技术、新产品和新应用的开发和创新,拥有优秀的国际化管理团队和先进的管理理念,自公司成立以来一直保持着稳健良好的发展势头,公司秉承安全,环保,健康的可持续发展理念,将诚信经营、职业健康、安全生产,环境保护和可持续发展放在首位,致力于成为化工行业的楷模和标杆企业。

随着《中华人民共和国土壤污染防治法》的颁布和实施,国家对土壤 环境的保护有了新的要求。近年来,随着环保工作要求的日益严格,土壤 环境现状也愈发引起社会各界关注,根据《国务院关于印发土壤污染防治 行动计划的通知》(国发〔2016〕31号),结合我省实际,江苏省人民政府于 2017年1月22日发布《江苏省土壤污染防治工作方案》(苏政发〔2016〕169号),明确要求针对我省有色金属矿采选、有色金属冶炼、石油加工、化工、焦化、电镀、制革以及农药、铅蓄电池、钢铁、危险废物利用处置等重点行业在产企业用地从 2017年起开展土壤污染详查工作,掌握土壤污 染状况、污染地块分布及其环境风险情况。

根据上述文件,江苏省生态环境厅经过筛选并征求各市意见,确定我省第一批土壤环境重点监管企业,并于 2017 年 12 月 14 日发布《关于公布江苏省土壤环境重点监管企业(第一批)的通知》(苏环办〔2017〕373 号),附件名单共 303 家,镇江联成化学工业有限公司也在其中。

镇江联成化学工业有限公司2019年及2020年完成场地内土壤及

地下水的自行监测,并委托江苏博越环境检测有限公司编制完成了《镇江联成化学工业有限公司土壤及地下水调查报告》。2020年调查报告显示:场地内28个土壤采样点,共计28个样品的重金属类、半挥发性有机物、挥发性有机物均未超过《建设用地土壤污染风险管控标准》(GB36600-2018)的第二类用地的筛选值;22个地下水样品的总硬度、溶解性总固体、硫酸盐、铁、锰、耗氧量、氨氮、细菌总数、1,2-二氯乙烷、氯乙烯、氯化物、邻苯二甲酸二(2-乙基己基)酯、铅、亚硝酸盐氮不能满足《地下水质量标准》(GB/T14848-2017)中Ⅲ类水水质标准要求,其中总硬度、铁、锰、氨氮、细菌总数、1,2-二氯乙烷、耗氧量、氯化物、溶解性总固体有个别点位达到了IV类水水质,其余污染物指标达到III类水水质标准要求。

按照《在产企业土壤及地下水自行监测技术指南(征求意见稿)》 表 2 "自行监测的最低监测频次"要求,企业最少每年开展一次土壤 及地下水自行监测。受镇江联成化学工业有限公司委托,江苏博越环 境检测有限公司(以下简称"我公司")承担 2021 年度的场地土壤、 地下水自行监测工作。

### 1.2 监测依据

### 1.2.1 相关法律、法规、政策

- (1) 《中华人民共和国环境保护法》(2015年);
- (2)《中华人民共和国水污染防治法》(2017年6月27日第二次修正):
- (3)《中华人民共和国固体废物污染环境防治法》(2016年修正):
  - (4)《中华人民共和国土壤污染防治法》(2019年1月1日);
  - (5)《土壤污染防治行动计划》(国发[2016]31号);
- (6)《污染地块土壤环境管理办法(试行)》(环境保护部令 第42号):
- (7)《废弃危险化学品污染环境防治办法》(国家环境保护总局令[2005]27号);
- (8)《关于加强土壤污染防治工作的意见》(环发〔2008〕48 号):
- (9)《江苏省土壤污染防治工作方案》(苏政发〔2016〕169号);
- (10)《关于发布镇江市土壤污染重点监管单位名录的通知》(镇环办〔2019〕223 号)。

#### 1.2.2 相关标准

- (1)《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB 36600-2018);
  - (2) 《地下水质量标准》(GB/T 14848-2017);

### 1.2.3 相关技术导则

- (1) 《建设用地土壤污染状况境调查技术导则》(HJ 25.1—2019);
- (2)《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019):
  - (3)《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019);
  - (4) 《建设用地土壤修复技术导则》(HJ 25.4-2019);
  - (5)《建设用地土壤污染风险管控和修复术语》(HJ 682-2019);
  - (6) 《场地环境评价导则》(DB11/T 656-2009);
- (7)《工业企业场地环境调查评估与修复工作指南(试行)》 (环境保护部公告 2014 年 第 78 号):
- (8)《建设用地土壤环境调查评估技术指南》(环境保护部公告 2017 年 第 72 号):
- (9)《北京市重点企业土壤环境监测技术指南(暂行)》(京 环函[2017]964号):
- (10)《在产企业土壤及地下水自行监测技术指南(征求意见稿)》;
  - (11)《关于印发重点行业用地调查系列技术文件的通知》(环办土壤[2017]67号)。

## 1.2.4 相关技术规范

- (1) 《土壤环境监测技术规范》(HJ/T 166-2004);
- (2) 《地下水环境监测技术规范》(HJ/T164-2004)。

## 1.2.5 企业提供的相关资料

《镇江联成化学工业有限公司土壤及地下水调查报告》(江苏博越环境监测检测有限公司,2019年);

《镇江联成化学工业有限公司土壤及地下水调查报告》(江苏博越环境监测检测有限公司,2020年)。

## 2 监测布点

## 2.1 点位布设

本年度自行监测,监测点位与2020年度基本保持一致。

| 序号 | 重点区域分布   | 土壤点位数量  | 地下水点位数量 |
|----|----------|---------|---------|
| 1  | 北厂区储罐区   | 2       | 2       |
| 2  | 办公区      | 1 (参照点) | 1 (参照点) |
| 3  | 苯酐生产装置区  | 3       | 2       |
| 4  | 增塑剂生产装置区 | 2       | 1       |
| 5  | 聚酯车间区域   | 2       | 2       |
| 6  | 环氧树脂区域   | 2       | 1       |
| 7  | 罐区 1     | 2       | 1       |
| 8  | 罐区 2     | 2       | 2       |
| 9  | 公用区 1    | 1       | 1       |
| 10 | 公用区 2    | 2       | 2       |
| 11 | 罐区 3     | 1       | 1       |
| 12 | 危废库      | 1       | 1       |
| 13 | 仓库 1     | 2       | 1       |
| 14 | 仓库 2     | 2       | 1       |
| 15 | 停车场      | 2       | 2       |
| 16 | 稳定剂装置    | 1       | 1       |
| 17 | 辅助用房     | 0       | 0       |
|    | 合计       | 28      | 22      |

表 2-1 厂区区域及设施分布

## 2.2 监测因子

## (1) 土壤

土壤监测布点、监测因子及频次见表 2-2; 在采样深度范围内,如果发现土壤有颜色或气味异样(现场采样时采用现场检测设备辅助判断)则取相应位置样品。

表 2-2 土壤监测

| 编号 | 监测点位名称                            | 监测点位            | 监测因子                                                                                              | 频次 |
|----|-----------------------------------|-----------------|---------------------------------------------------------------------------------------------------|----|
| 1  | 土壤<br>(28 个点位,<br>含 1 个背景监<br>测点) | 表层土 (0~0.5m), 同 | pH 值, 砷, 镉, 六价铬, 铜, 铅, 汞, 镍, 锌, 锰, 钴, 锑, 丙酮, 铍, 挥发性有机物, 半挥发性有机物, 苯 胺, 石 油 烃(C10-C40), 酚类化合物(2-氯酚) | 1次 |

土壤监测项目及分析方法见表 2-3。

表 2-3 土壤监测项目的分析方法及检出限

| 监测项目                 | 监测方法                                                                                            | 检出限        |
|----------------------|-------------------------------------------------------------------------------------------------|------------|
| pH 值                 | 土壤 pH 值的测定 电位法 HJ 962-2018                                                                      | /          |
| 镉                    | 土壤质量 铅、镉的测定 石墨炉火焰原子吸收分光光度法                                                                      | 0.01mg/kg  |
| <del></del>          | GB/T 17141-1997                                                                                 | 0.1mg/kg   |
| 铜                    | 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收                                                                      | 1mg/kg     |
| 镍                    | 分光光度法 HJ 491-2019                                                                               | 3mg/kg     |
| 六价铬                  | 土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收<br>分光光度法 HJ 1082-2019                                                | 0.5mg/kg   |
| 汞                    | 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定 GB/T 22105.1-2008                                         | 0.002mg/kg |
| 神                    | 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008                                         | 0.01mg/kg  |
| 2-氯酚                 | 土壤和沉积物 酚类化合物的测定 气相色谱法 HJ 703-2014                                                               | 0.04mg/kg  |
| 苯胺                   | 土壤和沉积物 苯胺及 3, 3'-二氯联苯胺的测定 气相色谱-质谱法 JSBY-ZY-T-004-20, 等同于 HJ 834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 | 0.016mg/kg |
| 石油烃<br>(C10-C4<br>0) | 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法 HJ<br>1021-2019                                                    | 6mg/kg     |
| 锌                    | 土壤质量 铜、锌的测定 火焰原子吸收分光光度法 GB/T 17138-1997                                                         | 1mg/kg     |
| 铍                    | 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法 HJ<br>737-2015                                                         | 0.03mg/kg  |

| <u> </u>         |        |                  |                |               |
|------------------|--------|------------------|----------------|---------------|
| 氯甲烷              |        |                  |                | 1.0μg/kg      |
| 氯乙烯              |        |                  |                | 1.0μg/kg      |
| 1,1-二氯<br>乙烯     |        |                  | $1.0 \mu g/kg$ |               |
| 二氯甲烷             |        |                  |                | 1.5µg/kg      |
| 反式-1,2-<br>二氯乙烯  |        |                  |                | 1.4µg/kg      |
| 1,1-二氯<br>乙烷     |        |                  |                | 1.2μg/kg      |
| 顺式-1,2-<br>二氯乙烯  |        |                  |                | 1.3µg/kg      |
| 氯仿               |        |                  |                | 1.1µg/kg      |
| 1,1,1-三氯<br>乙烷   |        |                  |                | 1.3µg/kg      |
| 四氯化碳             |        |                  |                | 1.2µg/kg      |
| 苯                |        |                  |                | 1.9µg/kg      |
| 1,2-二氯<br>乙烷     |        |                  |                | 1.3µg/kg      |
| 三氯乙烯             |        |                  |                | 1.2μg/kg      |
| 1,2-二氯<br>丙烷     | 土壤和沉积物 | 挥发性有机物的测定<br>质谱法 | 吹扫补集/气相色谱-     | 1.1µg/kg      |
| 甲苯               |        | НЈ 605-2011      |                | 1.3µg/kg      |
| 1,1,2-三氯<br>乙烷   |        |                  |                | 1.2µg/kg      |
| 四氯乙烯             |        |                  |                | <br>1.4μg/kg  |
| 氯苯               |        |                  |                | 1.2μg/kg      |
| 1,1,1,2-四 氯乙烷    |        |                  |                | 1.2μg/kg      |
| 乙苯               |        |                  |                | 1.2μg/kg      |
| 间/对-二<br>甲苯      |        |                  |                | 1.2μg/kg      |
| 邻-二甲苯            |        |                  |                | 1.2μg/kg      |
| 苯乙烯              |        |                  |                | 1.1µg/kg      |
| 1,1,2,2-四<br>氯乙烷 |        |                  |                | $1.2\mu g/kg$ |
| 1,2,3-三氯<br>丙烷   |        |                  |                | 1.2μg/kg      |
| 1,4-二氯 苯         |        |                  |                | 1.5µg/kg      |
| 1,2-二氯苯          |        |                  |                | 1.5µg/kg      |
| 硝基苯              |        |                  |                | 0.09mg/kg     |
| 萘                |        |                  |                | 0.09mg/kg     |

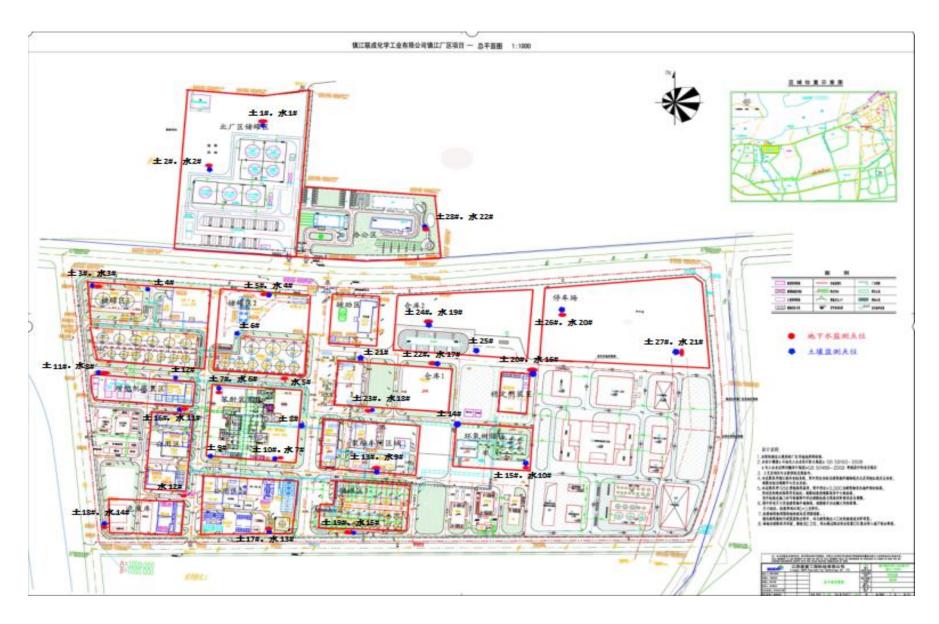
| 11-11-11-11- |                            | 0.1.11     |
|--------------|----------------------------|------------|
| 苯并(a)蒽       |                            | 0.1mg/kg   |
|              |                            | 0.1mg/kg   |
| 苯并(b)荧       |                            | 0.2mg/lrg  |
| 蒽            |                            | 0.2mg/kg   |
| 苯并(k)荧       |                            | 0.1        |
| 蒽            |                            | 0.1mg/kg   |
| 苯并(a)芘       |                            | 0.1mg/kg   |
| 茚并           |                            |            |
| (1,2,3-cd)   |                            | 0.1mg/kg   |
| 芘            |                            |            |
| 二苯并          |                            | 0.1mg/kg   |
| (ah)蒽        | 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 | U.Tilig/Kg |
| 邻苯二甲         | HJ 834-2017                |            |
| 酸二(2-二       | 113 034 2017               | 0.1mg/kg   |
| 乙基己基)        |                            | U.TIIIg/Kg |
| 酉旨           |                            |            |
| 邻苯二甲         |                            |            |
| 酸二正辛         |                            | 0.2mg/kg   |
| 酯            |                            |            |
| 邻苯二甲         |                            |            |
| 酸丁基苄         |                            | 0.2mg/kg   |
| 基酯           |                            |            |
| 邻苯二甲         |                            | 0.07ma/lsa |
| 酸二甲酯         |                            | 0.07mg/kg  |
| 邻苯二甲         |                            | 0.2mg/lrg  |
| 酸二乙酯         |                            | 0.3mg/kg   |
| 邻苯二甲         |                            |            |
| 酸二正丁         |                            | 0.1mg/kg   |
| 酉旨           |                            |            |

# (2) 地下水

地下水监测布点、监测因子及频次见表 2-4。在地下水流向上游 布设对照监测井;

表 2-4 地下水监测

| 编号 | 监测点位名称                            | 监测点位   | 监测因子                                                                                                                                                                                                      | <br>频次 |
|----|-----------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | 地下水<br>(22 个点位,含<br>1 个背景监测<br>点) | 水位下 4m | pH 值, 钾, 钠, 钙, 镁, 碱度 (CO <sub>3</sub> <sup>2-</sup> ),<br>氯化物 (Cl <sup>-</sup> ), 硫酸盐 (SO <sub>4</sub> <sup>2-</sup> ), 碱度<br>(HCO <sub>3</sub> <sup>-</sup> ), 氨氮, 硝酸盐氮, 亚硝酸<br>盐氮, 挥发酚, 氰化物, 砷, 汞, 铬 (六 |        |


|  | 价),总硬度,铅,氟化物,镉,铁,     |  |
|--|-----------------------|--|
|  | 锰,溶解性总固体,高锰酸盐指数,硫     |  |
|  | 酸盐, 氯化物, 总大肠菌群, 细菌总数, |  |
|  | 锌,铜,镍,钴,耗氧量,硫化物,钡,    |  |
|  | 石油类,挥发性有机物,半挥发性有机     |  |
|  | 物                     |  |

地下水监测项目及分析方法见表 2-5。

表 2-5 地下水监测项目的分析方法及检出限

| 监测项目  | 监测方法                                                                          | 检出限           |
|-------|-------------------------------------------------------------------------------|---------------|
| pH 值  | 水质 pH 值的测定 玻璃电极法<br>GB 6920-1986                                              | /             |
| 氨氮    | 水质 氨氮的测定 纳氏试剂分光光度法 HJ535-2009                                                 | 0.025mg/L     |
|       | 水质 无机阴离子 (F-、Cl-、NO2-、Br-、NO3-、PO43-、<br>SO32-、SO42-) 的测定 离子色谱法               | 0.016mg/L     |
| 亚硝酸盐氮 | HJ 84-2016                                                                    | 0.016mg/L     |
| 挥发酚   | 水质 挥发酚的测定 4-氨基安替比林分光光度法<br>HJ 503-2009                                        | 0.0003mg/L    |
| 氰化物   | 生活饮用水标准检验方法 无机非金属指标<br>GB/T5750.5-2006                                        | 0.002mg/L     |
| 砷     | 水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ                                                      | $0.3 \mu g/L$ |
| 汞     | 694-2014                                                                      | 0.04μg/L      |
| 铬(六价) | 生活饮用水标准检验方法 金属指标<br>GB/T 5750.6-2006                                          | 0.004mg/L     |
| 总硬度   | 水质 钙和镁总量的测定 EDTA 滴定法<br>GB 7477-1987                                          | 5.005mg/L     |
| 铅     | 水质 铜、锌、铅、镉的测定 原子吸收分光光度法<br>GB 7475-1987                                       | 1μg/L         |
| 氟     | 水质 无机阴离子 (F-、Cl-、NO2-、Br-、NO3-、PO43-、<br>SO32-、SO42-) 的测定 离子色谱法<br>HJ 84-2016 | 0.006mg/L     |
| 镉     | 石墨炉原子吸收分光光度法测定镉、铜和铅的测定《水和废水监测分析方法》(第四版 增补版) 国家环保总局 2002                       | 0.1ug/L       |
| 铁     | 水质 铁、锰的测定 火焰原子吸收分光光度法                                                         | 0.03mg/L      |
| <br>锰 | GB 11911-1989                                                                 | 0.01mg/L      |

| 生活饮用水标准检验方法 感官性状和物理指标<br>GB/T 5750.4-2006                                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 水质 高锰酸盐指数的测定<br>GB 11892-1989                                                | 0.5mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 水质 硫酸盐的测定 铬酸钡分光光度法(试行)<br>HJ/T342-2007                                       | 8mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 水质 氯化物的测定 硝酸银滴定法<br>GB 11896-1989                                            | 10mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 中总大肠菌群的测定 多管发酵法《水和废水监测分析<br>方法》(第四版 增补版)国家环保总局 2002                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 水质 细菌总数的测定 平皿计数法 HJ 1000-2018                                                | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 水质 钾和钠的测定 火焰原子吸收分光光度法                                                        | 0.05mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GB 11904-1989                                                                | 0.01mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 水质 钙和镁的测定 原子吸收分光光度法                                                          | 0.02mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GB 11903-1989                                                                | 0.002mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 碱指示剂滴定法《水和废水监测分析方法》(第四版增补版)国家环境保护总局(2002)                                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 质 无机阴离子 (F-、Cl-、NO2-、Br-、NO3-、PO43-、<br>SO32-、SO42-)的测定 离子色谱法<br>HJ 84-2016  | 0.007mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 质 无机阴离子 (F-、Cl-、NO2-、Br-、NO3-、PO43-、<br>SO32-、SO42-) 的测定 离子色谱法<br>HJ 84-2016 | 0.018mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB 7475-1987                                          | 0.05mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB<br>7475-1987                                       | 0.05mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 水质 镍的测定 火焰原子吸收分光光度法<br>GB 11912-1989                                         | 0.00006mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 生活饮用水标准检验方法 有机物综合指标<br>GB/T 5750.7-2006                                      | 0.05mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 水质 硫化物的测定 亚甲基蓝分光光度法<br>GB/T 16489-1996                                       | 0.005mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 质 钡的测定 石墨炉原子吸收分光光度法HJ602-2011                                                | 2.5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 水质 石油类的测定 紫外分光光度法(试行) HJ 970-2018                                            | 0.01mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法<br>HJ 639-2012                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 相色谱法-质谱法 《水和废水监测分析方法》(第四版 增补版) 国家环保总局 2002                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                              | GB/T 5750.4-2006  水质 高锰酸盐指数的测定 GB 11892-1989  水质 硫酸盐的测定 铬酸钡分光光度法(试行) HJ/T342-2007  水质 氯化物的测定 硝酸银滴定法 GB 11896-1989 中总大肠菌群的测定 多管发酵法《水和废水监测分析方法》(第四版 增补版)国家环保总局 2002 水质 细菌总数的测定 平皿计数法 HJ 1000-2018  水质 钾和钠的测定 火焰原子吸收分光光度法 GB 11904-1989  水质 钙和镁的测定 原子吸收分光光度法 GB 11905-1989  藏指示剂滴定法《水和废水监测分析方法》(第四版增补版)国家环境保护总局(2002)  质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 HJ 84-2016 质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 HJ 84-2016 质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 GB 19192-1987  水质 镍的测定 火焰原子吸收分光光度法 GB 7475-1987  水质 镍的测定 火焰原子吸收分光光度法 GB 1912-1989 生活饮用水标准检验方法 有机物综合指标 GB/T 5750.7-2006 水质 硫化物的测定 亚甲基蓝分光光度法 GBT 16489-1996 质 钡的测定 石墨炉原子吸收分光光度法(试行) HJ 970-2018 质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012 相色谱法-质谱法 《水和废水监测分析方法》(第四 |



## 3 样品采集、保存、流转及分析测试

## 3.1 采样前的准备

现场采样准备的材料和设备包括:定位仪器、现场探测设备、信息记录装备、监测井的建井材料、土壤和地下水取样设备、样品的保存装置和安全防护装备等。

#### 3.1.1 定位和探测

采样前,采用卷尺、GPS 卫星定位仪、经纬仪和水准仪等工具在现场确定采样点的具体位置和地面标高,并在采样布点图中标出。根据企业提供的施工图纸及咨询厂区相关建设人员,确保采样位置避开地下电缆、管线、沟、槽等地下障碍物。采用水位仪测量地下水水位,采用油水界面仪探测地下水非水相液体。

### 3.1.2 现场监测

据土壤的气味、颜色等现场状况进行初步判定,采用直接贯入设备现场连续测试地层和污染物垂向分布情况,指导样品采集及监测点位布设。

## 3.2 土壤样品采集

## 3.2.1 土壤样品的采集

深层土壤的采集使用钻孔取样。钻孔取样可采用人工钻孔后取样。手工钻探采样的设备包括螺纹钻、管钻、管式采样器等。

挥发性有机物污染、易分解有机物污染、恶臭污染土壤的采样, 采用无扰动式的采样方法和工具。钻孔取样采用快速压入法,主要工 具包括土壤原状取土器和回转取土器。槽探采用人工刻切块状土取 样。采样后立即将样品装入密封的容器,以减少暴露时间。如需采集 土壤混合样时,将等量各点采集的土壤样品充分混拌后四分法取得到 土壤混合样。易挥发、易分解及含恶臭的样品必须进行单独采样,禁止对样品进行均质化处理,不得采集混合样。

土壤样品采集后,根据污染物理化性质等,选用合适的容器保存。 含汞或有机污染物的土壤样品在4℃以下的温度条件下保存和运输, 具体参照 HJ25.2。

#### 3.2.2 土壤样品的保存与流转

挥发性有机物污染的土壤样品和恶臭污染土壤的样品采用密封性的采样瓶封装,样品充满容器整个空间;含易分解有机物的待测定样品,采取适当的封闭措施。样品置于4℃以下的低温环境(如冰箱)中运输、保存,避免运输、保存过程中的挥发损失,送至实验室后及时分析测试。

挥发性有机物浓度较高的样品装瓶后密封在塑料袋中,避免交叉污染,通过运输空白样来控制运输和保存过程中交叉污染情况。

具体土壤样品的保存与流转按照 HJ/T166 的要求进行。

## 3.3 地下水样品采集

地下水采样时依据场地的水文地质条件,结合调查获取的污染源 及污染土壤特征,利用最低的采样频次获得最有代表性的样品。

监测井采用空心钻杆螺纹钻进行钻井。

设置监测井时,避免采用外来的水及流体,同时在地面井口处采取防渗措施。

监测井的井管材料有一定强度,耐腐蚀,对地下水无污染。低密度非水溶性有机物样品用可调节采样深度的采样器采集,对于高密度非水溶性有机物样品可以用可调节采样深度的采样器或潜水式采样器采集。

在监测井建设完成后进行洗井。所有的污染物或钻井产生的岩层

破坏以及来自天然岩层的细小颗粒都必须去除,以保证出流的地下水中没有颗粒。使用的方法为超量抽水。

地下水采样在洗井后两小时进行。测试项目中有挥发性有机物时,适当减缓流速,避免冲击产生气泡,一般不超过 0.1L/min。

地下水采样的对照样品与目标样品来自相同含水层的同一深度。 具体地下水样品的采集、保存与流转按照 HJ/T164 的要求进行。

### 3.4样品分析

### 3.4.1 现场样品分析

在现场样品分析过程中,采用便携式分析仪器设备进行定性和半定量分析。

水样的温度须在现场进行分析测试,溶解氧、pH、电导率、色度、浊度等监测项目亦可在现场进行分析测试,并保持监测时间一致性。

采用便携式仪器设备对挥发性有机物进行定性分析,将污染土壤置于密闭容器中,稳定一定时间后测试容器中顶部的气体。

## 3.4.2 实验室样品分析

## (1) 土壤样品分析

土壤样品关注污染物的分析测试参照 HJ/T166 中的指定方法。土壤的常规理化特征土壤 pH、粒径分布、密度、孔隙度、有机质含量、渗透系数、阳离子交换量等的分析测试按照 GB50021 执行。污染土壤的危险废物特征鉴别分析,按照 GB5085 和 HJ/T298 中的指定方法。

## (2) 其他样品分析

地下水样品的分析分别按照 HJ/T164 中的指定方法进行。

### 3.5 质量控制与质量保证

#### 3.5.1 采样过程

在样品的采集、保存、运输、交接等过程建立完整的管理程序。 为避免采样设备及外部环境条件等因素对样品产生影响,注重现场采 样过程中的质量保证和质量控制。

- (1) 防止采样过程中的交叉污染。钻机采样过程中,在第一个钻孔开钻前进行设备清洗;进行连续多次钻孔的钻探设备进行清洗;同一钻机在不同深度采样时,对钻探设备、取样装置进行清洗;与土壤接触的其他采样工具重复利用时也进行清洗。一般情况下用清水清理,也可用待采土样或清洁土壤进行清洗;必要时或特殊情况下,采用无磷去垢剂溶液、高压自来水、去离子水(蒸馏水)或10%硝酸进行清洗。
- (2) 采集现场质量控制样是现场采样和实验室质量控制的重要手段。质量控制样一般包括平行样、空白样及运输样,质控样品的分析数据可从采样到样品运输、贮存和数据分析等不同阶段反映数据质量。
- (3) 在采样过程中,同种采样介质,采集至少一个样品采集平行样。样品采集平行样是从相同的点位收集并单独封装和分析的样品。
- (4) 采集土壤样品用于分析挥发性有机物指标时,每次运输采集至少一个运输空白样,即从实验室带到采样现场后,又返回实验室的与运输过程有关,并与分析无关的样品,以便了解运输途中是否受到污染和样品是否损失。
- (5) 现场采样记录、现场监测记录使用表格描述土壤特征、可 疑物质或异常现象等,同时保留现场相关影像记录,其内容、页码、

编号要齐全便于核查,如有改动应注明修改人及时间。

自行监测采样采取二次污染防治措施如下:

- (1)取样结束后,废弃土壤样品集中收集,避免遗撒。现场产生的废弃手套、口罩等垃圾统一收集,避免乱丢乱放。
- (2)清洗监测井产生的废水、设备清洗废水等,使用容器进行集中 收集,进污水站处理达标后排入市政污水管网。
  - (3) 不同采样点钻探时, 及时清洗钻具。
  - (4) 贝勒管一井一管, 钻探结束后及时使用膨润土封孔。

#### 3.5.2 样品分析及其他过程

- (1) 分析测试方法选择与确认
- ①采用详查技术规定推荐分析测试方法;
- ②完成方法检出限、测定下限、精密度、准确度、线性范围等确 认。
  - (2) 实验室内部质量控制
  - ①空白试验:依据分析测试方法规定,或每批次2个空白样品;
- ②定量校准:标注物质、标准曲线(至少5个浓度梯度、r>0.999)、 仪器稳定性检查(每分析测试20个样品,测定一次标准曲线中 间浓度点,无机和有机项目相对偏差分别控制在10%和20%以内);
  - ③精密度控制

平行双样分析:每批次随机抽取 5%; 批次样品数<20 时,至少 2 个土壤和农产品平行双样相对偏差 (RD) 合格范围执行表 1 和表 2 平行双样分析测试合格率应达到 95%;

- ④准确度控制:有证标准物质物质、加标回收率、准确度控制图;
  - (3) 异常样品复测

土壤、地下水的样品分析及其他过程的质量控制与质量保证技术

要求按照 HJ/T166、HJ/T164 相关要求进行,对于特殊监测项目按照相关标准要求在限定时间内进行监测。

## 3.6 监测设施的建设

在产企业地下水采样井需建成长期监测井。监测井的建设方法参照《北京市场地环境评价导则》(DB11/T656)的要求进行。

## 3.6.1 监测井保护措施

为防止监测井物理破坏,防止地表水、污染物质进入,监测井建有井台、井口保护管、锁盖等。井台构筑为明显式井台。

本项目采用明显式井台,井管地上部分约30cm~50cm,超出地面的部分采用管套保护,保护管顶端安装可开合的盖子,并有上锁的位置。安装时监测井井管位于保护管中央。

井口保护管选择强度较大且不宜损坏材质,管长 1m,直径比井管大 100mm 左右,高出平台 0.5m,外部刷防锈漆。监测井井口用与井管同材质的丝堵或管帽封堵。

# 4 监测结果分析

# 4.1 监测结果

地下水监测结果见表 4-1,根据地下水监测结果,对照《地下水质量标准》(GB/T14848-93)进行分类评价;土壤监测结果见表 4-2。

表 4-1 地下水监测结果统计表

| <br>监测地点     | 北厂区储罐区 1#      | 北厂区储罐区 2#      | 罐区1 3#      | 罐区2 4#         | IV类评价标准                              |
|--------------|----------------|----------------|-------------|----------------|--------------------------------------|
| 采样日期         | 2021.4.26      | 2021.4.26      | 2021.4.25   | 2021.4.25      | _                                    |
| 样品编号         | DX-1-1-1       | DX-2-1-1       | DX-3-1-1    | DX-4-1-1       | _                                    |
| 样品状态         | 无色、无气味、无<br>浮油 | 无色、无气味、无<br>浮油 | 黄色、无气味、无 浮油 | 黄色、无气味、<br>无浮油 | _                                    |
| 监测项目         | 监测结果           | 监测结果           | 监测结果        | 监测结果           | _                                    |
| pH 值,无量纲     | 6.92           | 6.82           | 6.85        | 6.71           | 5.5\leqpH\leq6.5<br>8.5\leqpH\leq9.0 |
| 总硬度, mg/L    | 868.0          | 870.0          | 886.8       | 951.1          | ≤650                                 |
| 溶解性总固体, mg/L | 1060           | 1032           | 906         | 925            | ≤2000                                |
| 硫酸盐, mg/L    | 196            | 291            | ND          | ND             | ≤350                                 |
| 氯化物,mg/L     | 16             | 17             | 31          | 26             | ≤350                                 |
| 铁, mg/L      | ND             | ND             | 3.24        | 7.36           | ≤2.0                                 |
| 锰, mg/L      | 0.17           | 0.32           | 2.20        | 2.73           | ≤1.5                                 |

| 监测地点                                  | 北厂区储罐区 1#           | 北厂区储罐区 2#           | 罐区1 3#            | 罐区2 4#              | Ⅳ类评价标准 |
|---------------------------------------|---------------------|---------------------|-------------------|---------------------|--------|
| 铜, mg/L                               | ND                  | ND                  | ND                | ND                  | ≤1.5   |
| 锌, mg/L                               | ND                  | ND                  | ND                | ND                  | ≤5.0   |
| 挥发酚, mg/L                             | 0.0006              | 0.0008              | 0.0014            | 0.0005              |        |
| <br>耗氧量, mg/L                         | 1.2                 | 1.6                 | 9.6               | 6.4                 | ≤10    |
| ————————————————————————————————————— | 1.82                | 1.91                | 5.54              | 2.87                | ≤1.5   |
| 硫化物, mg/L                             | ND                  | ND                  | ND                | ND                  | ≤0.10  |
| 纳(Na <sup>+</sup> ),mg/L              | 27.4                | 27.2                | 42.4              | 39.2                | ≤400   |
| 一总大肠菌群, MPN/L                         | <20                 | <20                 | <20               | <20                 | ≤1000  |
| 细菌总数, CFU/mL                          | $2.4 \times 10^{3}$ | $1.9 \times 10^{2}$ | $5.3 \times 10^4$ | $2.8 \times 10^{3}$ | ≤1000  |
| 亚硝酸盐氮, mg/L                           | ND                  | ND                  | ND                | ND                  | ≤4.8   |
| 硝酸盐氮, mg/L                            | 8.53                | 0.452               | ND                | ND                  | ≤30    |
| 氰化物, mg/L                             | ND                  | ND                  | ND                | ND                  | ≤0.1   |
| 氟化物, mg/L                             | 0.339               | ND                  | 0.100             | 0.222               | ≤2.0   |
| 汞, ug/L                               | ND                  | ND                  | ND                | 0.23                | ≤2     |
| 砷, ug/L                               | 1.2                 | 0.4                 | 2.0               | 0.4                 | ≤50    |
| 镉, ug/L                               | ND                  | ND                  | 0.1               | 0.1                 | ≤10    |
| 六价铬, mg/L                             | ND                  | ND                  | ND                | ND                  | ≤0.10  |
| 铅, ug/L                               | ND                  | ND                  | 5                 | ND                  | ≤100   |
| 钡, ug/L                               | 63.9                | 43.6                | 166               | 93.3                | ≤4000  |

| 监测地点                                       | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区 2 4# | IV类评价标准 |
|--------------------------------------------|-----------|-----------|--------|---------|---------|
| 镍, mg/L                                    | ND        | ND        | ND     | ND      | ≤0.10   |
| 钴, mg/L                                    | ND        | ND        | ND     | ND      | ≤0.10   |
| 高锰酸盐指数, mg/L                               | 1.3       | 1.7       | 9.7    | 6.3     |         |
| 钾(K <sup>+</sup> ),mg/L                    | 0.461     | 0.486     | 7.62   | 0.597   |         |
| 钙(Ca <sup>2+</sup> ),mg/L                  | 126       | 169       | 230    | 224     |         |
| 镁(Mg <sup>2+</sup> ),mg/L                  | 47.2      | 42.4      | 36.4   | 46.4    |         |
| 碱度(CO <sub>3</sub> ²-),mg/L                | 0.000     | 0.000     | 0.000  | 0.000   |         |
| 碱度(HCO3 <sup>-</sup> )mg/L,                | 653.2     | 630.7     | 735.4  | 798.0   |         |
| 氯化物(Cl <sup>-</sup> )mg/L,                 | 15.1      | 15.6      | 29.7   | 25.4    |         |
| 硫酸盐 (SO <sub>4</sub> <sup>2-</sup> ), mg/L | 194       | 289       | ND     | 2.90    |         |
| 石油类, mg/L                                  | 0.02      | 0.03      | 0.06   | 0.04    |         |
|                                            | 158       | 120       | 165    | 70.4    |         |
|                                            | ND        | ND        | ND     | ND      | ≤50     |
| 苯, μg/L                                    | 3.8       | 3.8       | ND     | ND      | ≤120    |
| 甲苯, μg/L                                   | 4.0       | 4.0       | 4.0    | 4.0     | ≤1400   |
| 二氯甲烷, μg/L                                 | 2.7       | 2.7       | 2.7    | ND      | ≤500    |
| 1, 2-二氯乙烷, μg/L                            | 3.5       | 3.3       | 77.0   | ND      | ≤40     |
| 1,1,1-三氯乙烷,μg/L                            | ND        | ND        | ND     | ND      | ≤4000   |
| 1,1,2-三氯乙烷,μg/L                            | ND        | ND        | ND     | ND      | ≤60     |

| 监测地点                                 | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区 2 4# | Ⅳ类评价标准 |
|--------------------------------------|-----------|-----------|--------|---------|--------|
| 1, 2-二氯丙烷, μg/L                      | ND        | ND        | ND     | ND      | ≤60    |
|                                      | ND        | ND        | 7.6    | ND      | ≤90    |
| 1,1-二氯乙烯,μg/L                        | 4.9       | ND        | ND     | ND      | ≤60    |
| 反式-1, 2-二氯乙烯,<br>μg/L                | 9.2       | 9.1       | ND     | ND      | ≤60    |
|                                      | 3.5       | ND        | ND     | ND      | ≤210   |
| 四氯乙烯,μg/L                            | 5.8       | ND        | ND     | ND      | ≤300   |
|                                      | 3.5       | 3.5       | 3.5    | ND      | ≤600   |
| 1, 2, 3-三氯苯, μg/L                    | 3.5       | 3.4       | 3.4    | ND      |        |
| 1, 2, 4-三氯苯, μg/L                    | 3.9       | 3.8       | 3.7    | 3.8     |        |
| 乙苯, μg/L                             | 4.0       | 3.9       | 3.9    | 3.9     | ≤600   |
| ———————————————————————————————————— | 4.5       | 4.5       | 4.5    | 4.5     |        |
| 对-二甲苯, μg/L                          | 4.5       | 4.5       | 4.5    | 4.5     |        |
| 邻-二甲苯, μg/L                          | 4.0       | 4.0       | 4.0    | ND      |        |
| 苯乙烯,μg/L                             | 3.4       | 3.5       | 3.5    | ND      | ≤40    |
| 1,1-二氯乙烷,μg/L                        | ND        | ND        | ND     | ND      |        |
| 氯丁二烯,μg/L                            | 2.9       | 2.9       | ND     | ND      |        |
| 2, 2-二氯丙烷, μg/L                      | ND        | ND        | ND     | ND      |        |
| 顺式-1, 2-二氯乙烯,<br>μg/L                | 4.2       | ND        | ND     | ND      | ≤60    |

| 监测地点                                 | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区2 4# | IV类评价标准 |
|--------------------------------------|-----------|-----------|--------|--------|---------|
| ———————————————————————————————————— | ND        | ND        | ND     | ND     |         |
|                                      | ND        | ND        | ND     | ND     |         |
| 1, 1-二氯丙烯, μg/L                      | 6.7       | 6.7       | ND     | ND     |         |
| ———————————————————————————————————— | ND        | ND        | ND     | ND     |         |
| ——溴二氯甲烷,μg/L                         | ND        | ND        | ND     | ND     |         |
|                                      | ND        | ND        | ND     | ND     |         |
| 顺式-1, 3-二氯丙烯,                        | 4.0       | ND        | ND     | ND     |         |
| μg/L<br>反式-1, 3-二氯丙烯,<br>μg/L        | 4.2       | 4.1       | ND     | ND     |         |
|                                      | ND        | ND        | ND     | ND     |         |
| ———————————————————————————————————— | ND        | ND        | ND     | ND     |         |
|                                      | ND        | ND        | ND     | ND     |         |
| 1, 1, 1, 2-四氯乙烷,<br>μg/L             | ND        | ND        | ND     | ND     |         |
| 溴仿, μg/L                             | ND        | ND        | ND     | ND     |         |
| <br>异丙苯, μg/L                        | 4.6       | 4.6       | 4.6    | 4.6    |         |
|                                      | 3.5       | ND        | ND     | ND     |         |
| 1, 1, 2, 2-四氯乙烷,<br>μg/L             | ND        | ND        | ND     | ND     |         |
| 1, 2, 3-三氯丙烷, μg/L                   | ND        | ND        | ND     | ND     |         |
| 正丙苯,μg/L                             | 4.7       | ND        | ND     | 4.6    |         |

| <br>监测地点                             | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区 2 4# | IV类评价标准 |
|--------------------------------------|-----------|-----------|--------|---------|---------|
|                                      | 3.7       | 3.6       | ND     | ND      |         |
|                                      | 3.9       | 3.8       | 3.8    | ND      |         |
| 1,3,5-三甲基苯,μg/L                      | 4.6       | 4.6       | 4.5    | 4.5     |         |
|                                      | 5.3       | 5.2       | ND     | ND      |         |
| 1, 2, 4-三甲基苯, μg/L                   | 3.9       | 4.0       | 3.9    | 3.9     |         |
| 一<br>仲丁基苯, μg/L                      | 5.3       | 5.3       | 5.2    | 5.3     |         |
| 1, 3-二氯苯, μg/L                       | 3.7       | 3.6       | 3.6    | 3.5     |         |
|                                      | 6.2       | 6.2       | 6.1    | 6.2     |         |
|                                      | 4.4       | 4.3       | 4.3    | 4.2     |         |
|                                      | 3.4       | 3.3       | 3.3    | 3.3     |         |
| <br>正丁基苯, μg/L                       | 5.4       | 5.3       | 5.3    | 5.4     |         |
| 1,2-二溴-3-氯丙烷,<br>μg/L                | ND        | ND        | ND     | ND      |         |
| <u></u> ; 六氯丁二烯,μg/L                 | 6.1       | ND        | ND     | 6.0     |         |
| ———————————————————————————————————— | 2.9       | 2.8       | 2.8    | 2.7     | ≤600    |
| 半挥发性有机物,μg/L                         | ND        | ND        | 10.4   | ND      |         |
|                                      | ND        | ND        | ND     | ND      | ≤60     |
| 2,6-二硝基甲苯, μg/L                      | ND        | ND        | ND     | ND      | ≤30     |
| ———————————————————————————————————— | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      | ≤3600   |

| <br>监测地点                             | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区 2 4# | IV类评价标准 |
|--------------------------------------|-----------|-----------|--------|---------|---------|
|                                      | ND        | ND        | ND     | ND      | ≤480    |
| ——苯并[b]荧蒽,μg/L                       | ND        | ND        | ND     | ND      | ≤8      |
|                                      | ND        | ND        | ND     | ND      | ≤0.50   |
| 邻苯二甲酸二 (2-乙基<br>己基) 酯, μg/L          | ND        | ND        | ND     | ND      | ≤300    |
| 五氯酚, μg/L                            | ND        | ND        | ND     | ND      | ≤18     |
| —                                    | ND        | ND        | ND     | ND      | ≤2      |
| ———————————————————————————————————— | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
| ——六氯乙烷 <b>, μg/L</b>                 | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
| 异佛尔酮, μg/L                           | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
| 2,4-二甲基苯酚, μg/L                      | ND        | ND        | ND     | ND      |         |
| 二(2-氯乙氧基)甲烷,<br>μg/L                 | ND        | ND        | ND     | ND      |         |

| <br>监测地点              | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区2 4# | IV类评价标准 |
|-----------------------|-----------|-----------|--------|--------|---------|
|                       | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     |         |
| 一<br>六氯丁二烯,μg/L       | ND        | ND        | ND     | ND     |         |
| 4-氯-3-甲基苯酚, μg/L      | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     | ≤300    |
|                       | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     |         |
| 邻苯二甲酸二甲酯,             | ND        | ND        | ND     | ND     |         |
| μg/L<br>苊烯(二氢苊), μg/L | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     |         |
|                       | ND        | ND        | ND     | ND     |         |
| 芴, μg/L               | ND        | ND        | ND     | ND     |         |
| 4-氯苯基苯基醚, μg/L        | ND        | ND        | ND     | ND     |         |
| 2-甲基-4,6-二硝基苯         | ND        | ND        | ND     | ND     |         |
| <b>酚,μg/L</b>         | ND        | ND        | ND     | ND     |         |
| 4-溴苯基苯基醚, μg/L        | ND        | ND        | ND     | ND     |         |
| 菲,μg/L                | ND        | ND        | ND     | ND     |         |
| 邻苯二甲酸二丁酯,             | ND        | ND        | ND     | ND     |         |
| μg/L                  |           |           |        |        |         |

| 监测地点                                 | 北厂区储罐区 1# | 北厂区储罐区 2# | 罐区1 3# | 罐区 2 4# | IV类评价标准 |
|--------------------------------------|-----------|-----------|--------|---------|---------|
| 苉, μg/L                              | ND        | ND        | ND     | ND      |         |
| ———————————————————————————————————— | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
| 邻苯二甲酸二正辛酯,                           | ND        | ND        | 10.4   | ND      |         |
| μg/L                                 |           |           |        |         |         |
| ———————————————————————————————————— | ND        | ND        | ND     | ND      |         |
| 茚并[1,2,3-cd]芘, μg/L                  | ND        | ND        | ND     | ND      |         |
|                                      | ND        | ND        | ND     | ND      |         |
| 苯并[g,h,i]苝, μg/L                     | ND        | ND        | ND     | ND      |         |

续表 4-1 地下水监测结果统计表

| 类农 4-1 地下水血网络水池 1 农 |                |                |                |                 |                                           |  |  |  |
|---------------------|----------------|----------------|----------------|-----------------|-------------------------------------------|--|--|--|
| 监测地点                | 罐区2 5#         | 苯酐生产装置区<br>6#  | 苯酐生产装置区<br>7#  | 增塑剂生产装置<br>区 8# | Ⅳ类评价标准                                    |  |  |  |
| <br>采样日期            | 2021.4.25      | 2021.4.25      | 2021.4.25      | 2021.4.25       | _                                         |  |  |  |
| ———样品编号             | DX-5-1-1       | DX-6-1-1       | DX-7-1-1       | DX-8-1-1        | _                                         |  |  |  |
| ———————————<br>样品状态 | 黄色、无气味、<br>无浮油 | 微黄、无气味、<br>无浮油 | 微黄、无气味、无<br>浮油 | 无色、无气味、无<br>浮油  | _                                         |  |  |  |
| 监测项目                | 监测结果           | 监测结果           | 监测结果           | 监测结果            | <u> </u>                                  |  |  |  |
| pH 值,无量纲            | 6.85           | 6.92           | 6.98           | 6.90            | 5.5\left pH < 6.5  8.5 \left pH \left 9.0 |  |  |  |
| 总硬度, mg/L           | 527.9          | 480.9          | 330.2          | 607.3           | ≤650                                      |  |  |  |
| 溶解性总固体, mg/L        | 500            | 554            | 391            | 1219            | ≤2000                                     |  |  |  |
| 硫酸盐, mg/L           | 10             | ND             | ND             | 180             | ≤350                                      |  |  |  |
| 氯化物, mg/L           | 22             | 21             | 48             | 265             | ≤350                                      |  |  |  |
| 铁, mg/L             | 4.07           | 1.73           | 2.08           | 2.58            | ≤2.0                                      |  |  |  |
| 锰, mg/L             | 1.77           | 0.62           | 1.68           | 3.09            | ≤1.5                                      |  |  |  |
| 铜,mg/L              | ND             | ND             | ND             | ND              | ≤1.5                                      |  |  |  |
| 锌, mg/L             | ND             | ND             | ND             | ND              | ≤5.0                                      |  |  |  |
| 挥发酚, mg/L           | 0.0010         | 0.0005         | 0.0015         | 0.0009          |                                           |  |  |  |
| 耗氧量,mg/L            | 10.1           | 8.1            | 6.9            | 3.8             | ≤10                                       |  |  |  |
| 氨氮, mg/L            | 4.51           | 4.41           | 3.01           | 1.64            | ≤1.5                                      |  |  |  |

| 监测地点                     | 罐区 2 5#           | 苯酐生产装置区<br>6#       | 苯酐生产装置区<br>7#       | 增塑剂生产装置区 8#          | Ⅳ类评价标准 |
|--------------------------|-------------------|---------------------|---------------------|----------------------|--------|
| 硫化物, mg/L                | ND                | ND                  | ND                  | ND                   | ≤0.10  |
| 钠(Na <sup>+</sup> ),mg/L | 21.9              | 28.6                | 30.1                | 48.6                 | ≤400   |
| 总大肠菌群, MPN/L             | <20               | <20                 | <20                 | <20                  | ≤1000  |
| 细菌总数, CFU/mL             | $1.9 \times 10^4$ | $4.6 \times 10^{3}$ | $2.2 \times 10^{3}$ | $1.5 \times 10^4$    | ≤1000  |
| 亚硝酸盐氮, mg/L              | 0.466             | ND                  | 0.357               | 0.489                | ≤4.8   |
| 硝酸盐氮, mg/L               | ND                | ND                  | ND                  | ND                   | ≤30    |
| 氰化物, mg/L                | ND                | ND                  | ND                  | ND                   | ≤0.1   |
| 氟化物, mg/L                | 0.756             | 0.679               | 0.382               | ND                   | ≤2.0   |
| 汞, ug/L                  | 0.55              | 0.60                | 0.72                | 0.79                 | ≤2     |
| 砷, ug/L                  | 4.4               | 4.8                 | 3.2                 | 2.5                  | ≤50    |
| 镉, ug/L                  | 0.2               | 0.3                 | ND                  | 0.1                  | ≤10    |
| 六价铬, mg/L                | ND                | ND                  | ND                  | ND                   | ≤0.10  |
| 铅, ug/L                  | 4                 | 6                   | 7                   | 2                    | ≤100   |
| 钡, ug/L                  | 62.7              | 45.8                | 77.2                | 78.5                 | ≤4000  |
| 镍, mg/L                  | ND                | ND                  | ND                  | 8.0×10 <sup>-5</sup> | ≤0.10  |
| 钴, mg/L                  | ND                | ND                  | ND                  | ND                   | ≤0.10  |
| 高锰酸盐指数, mg/L             | 10.3              | 8.2                 | 6.8                 | 3.9                  |        |
| 钾(K <sup>+</sup> ),mg/L  | 1.45              | 1.50                | 0.480               | 22.5                 |        |

| 监测地点                                      | 罐区 2 5# | 苯酐生产装置区<br>6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8# | IV类评价标准 |
|-------------------------------------------|---------|---------------|---------------|-----------------|---------|
| 钙(Ca <sup>2+</sup> ),mg/L                 | 116     | 1.50          | 0.480         | 22.5            |         |
| 镁(Mg <sup>2+</sup> ), mg/L                | 21.6    | 28.6          | 30.1          | 48.6            |         |
| 碱度(CO3 <sup>2-</sup> ),mg/L               | 0.000   | 148           | 115           | 153             |         |
| 碱度 (HCO <sub>3</sub> -) mg/L,             | 421.5   | 23.8          | 12.6          | 33.6            |         |
| 氯化物 (Cl <sup>-</sup> ) mg/L,              | 21.4    | 20.6          | 43.3          | 257             |         |
| 硫酸盐(SO <sub>4</sub> <sup>2-</sup> ), mg/L | 8.64    | ND            | ND            | 176             |         |
| <br>石油类, mg/L                             | 0.05    | 0.06          | 0.05          | 0.04            |         |
|                                           | 60.3    | 79.5          | 26.4          | 28.0            |         |
|                                           | ND      | ND            | ND            | ND              | ≤50     |
| <b>苯,μg/L</b>                             | ND      | ND            | ND            | 3.9             | ≤120    |
| ————————————————————————————————————      | 4.0     | 4.0           | 4.0           | ND              | ≤1400   |
| 二氯甲烷, μg/L                                | 2.7     | ND            | ND            | 2.8             | ≤500    |
| 1, 2-二氯乙烷, μg/L                           | 5.1     | 39.8          | 4.3           | 3.0             | ≤40     |
| 1, 1, 1-三氯乙烷,<br>μg/L                     | ND      | ND            | ND            | ND              | ≤4000   |
| 1, 1, 2-三氯乙烷,<br>μg/L                     | ND      | ND            | ND            | ND              | ≤60     |
| 1,2-二氯丙烷, μg/L                            | ND      | ND            | ND            | ND              | ≤60     |
| 氯乙烯,μg/L                                  | ND      | 7.5           | ND            | ND              | ≤90     |

| 监测地点                                 | 罐区2 5# | 苯酐生产装置区<br>6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8# | Ⅳ类评价标准 |
|--------------------------------------|--------|---------------|---------------|-----------------|--------|
| 1,1-二氯乙烯,μg/L                        | ND     | ND            | ND            | ND              | ≤60    |
| 反式-1, 2-二氯乙烯,<br>μg/L                | ND     | ND            | ND            | ND              | ≤60    |
| <br>三氯乙烯 <b>,μg</b> /L               | ND     | ND            | ND            | ND              | ≤210   |
|                                      | ND     | ND            | ND            | ND              | ≤300   |
| 氯苯, μg/L                             | 3.4    | 3.4           | ND            | 6.6             | ≤600   |
| 1, 2, 3-三氯苯, μg/L                    | ND     | ND            | ND            | ND              |        |
| 1, 2, 4-三氯苯, μg/L                    | ND     | ND            | ND            | ND              |        |
|                                      | 3.9    | 3.9           | 3.9           | 4.1             | ≤600   |
| ———————————————————————————————————— | 4.4    | 4.5           | 4.4           | 4.9             |        |
| 对-二甲苯, μg/L                          | 4.4    | 4.5           | 4.4           | 4.9             |        |
| 邻-二甲苯, μg/L                          | ND     | ND            | ND            | ND              |        |
| 苯乙烯,μg/L                             | ND     | ND            | ND            | ND              | ≤40    |
| 1, 1-二氯乙烷, μg/L                      | ND     | ND            | ND            | ND              |        |
|                                      | ND     | ND            | ND            | ND              |        |
| 2, 2-二氯丙烷, μg/L                      | ND     | ND            | ND            | ND              |        |
| 顺式-1,2-二氯乙烯,<br>μg/L                 | ND     | ND            | ND            | ND              | ≤60    |
|                                      | ND     | ND            | ND            | ND              |        |

| -                        | <u> </u> |            |               | 197. 99 2.1 .1 2. 31. 99 |         |
|--------------------------|----------|------------|---------------|--------------------------|---------|
| 监测地点                     | 罐区2 5#   | 苯酐生产装置区 6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8#          | IV类评价标准 |
|                          | ND       | ND         | ND            | ND                       |         |
| 1,1-二氯丙烯,μg/L            | ND       | ND         | ND            | ND                       |         |
| 二溴甲烷,μg/L                | ND       | ND         | ND            | ND                       |         |
| 一溴二氯甲烷,μg/L              | ND       | ND         | ND            | ND                       |         |
| 环氧氯丙烷, μg/L              | ND       | ND         | ND            | ND                       |         |
| 顺式-1,3-二氯丙烯,<br>μg/L     | ND       | ND         | ND            | ND                       |         |
| 反式-1, 3-二氯丙烯,<br>μg/L    | ND       | ND         | ND            | ND                       |         |
| 1,3-二氯丙烷, μg/L           | ND       | ND         | ND            | ND                       |         |
| 二溴氯甲烷,μg/L               | ND       | ND         | ND            | ND                       |         |
| 1,2-二溴乙烷, μg/L           | ND       | ND         | ND            | ND                       |         |
| 1, 1, 1, 2-四氯乙烷,<br>μg/L | ND       | ND         | ND            | ND                       |         |
| 溴仿, μg/L                 | ND       | ND         | ND            | ND                       |         |
|                          | 4.6      | ND         | ND            | ND                       |         |
| <br>溴苯, μg/L             | ND       | ND         | ND            | ND                       |         |
| 1, 1, 2, 2-四氯乙烷,<br>μg/L | ND       | ND         | ND            | ND                       |         |
| 1, 2, 3-三氯丙烷,<br>μg/L    | ND       | ND         | ND            | ND                       |         |

| 监测地点                                 | 罐区2 5# | 苯酐生产装置区<br>6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8# | Ⅳ类评价标准 |
|--------------------------------------|--------|---------------|---------------|-----------------|--------|
| <br>正丙苯, μg/L                        | 4.6    | ND            | 4.6           | ND              |        |
|                                      | 3.6    | ND            | ND            | ND              |        |
|                                      | 3.8    | ND            | ND            | ND              |        |
| 1, 3, 5-三甲基苯,<br>μg/L                | ND     | ND            | ND            | ND              |        |
| 叔丁基苯,μg/L                            | ND     | ND            | ND            | ND              |        |
| 1, 2, 4-三甲基苯,<br>μg/L                | 3.9    | ND            | ND            | ND              |        |
| 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | ND     | ND            | ND            | ND              |        |
| 1, 3-二氯苯, μg/L                       | 3.6    | 3.6           | ND            | ND              |        |
| 4-异丙基甲苯, μg/L                        | ND     | ND            | ND            | ND              |        |
| 1, 4-二氯苯, μg/L                       | 4.2    | 4.3           | ND            | ND              |        |
| 1, 2-二氯苯, μg/L                       | 3.3    | 3.3           | ND            | ND              |        |
| 正丁基苯,μg/L                            | 5.2    | 5.2           | 5.2           | ND              |        |
| 1, 2-二溴-3-氯丙烷,<br>μg/L               | ND     | ND            | ND            | ND              |        |
| 六氯丁二烯,μg/L                           | ND     | ND            | ND            | ND              |        |
| 萘,μg/L                               | ND     | ND            | ND            | 2.7             | ≤600   |
| 半挥发性有机物,<br>μg/L                     | ND     | ND            | ND            | 31.9            |        |

| ————<br>监测地点                         | 罐区2 5#   | 苯酐生产装置区 | 苯酐生产装置区 | 增塑剂生产装置 | ■ Ⅳ类评价标准 |
|--------------------------------------|----------|---------|---------|---------|----------|
| <u></u>                              | 唯 丘 乙 3# | 6#      | 7#      | 区 8#    | 10 矢叶切称作 |
| 2,4-二硝基甲苯,μg/L                       | ND       | ND      | ND      | ND      | ≤60      |
| 2,6-二硝基甲苯,μg/L                       | ND       | ND      | ND      | ND      | ≤30      |
| ———————————————————————————————————— | ND       | ND      | ND      | ND      |          |
| 蒽, μg/L                              | ND       | ND      | ND      | ND      | ≤3600    |
|                                      | ND       | ND      | ND      | ND      | ≤480     |
|                                      | ND       | ND      | ND      | ND      | ≤8       |
|                                      | ND       | ND      | ND      | ND      | ≤0.50    |
| 邻苯二甲酸二 (2-乙<br>基己基) 酯, μg/L          | ND       | ND      | ND      | ND      | ≤300     |
| 五氯酚, μg/L                            | ND       | ND      | ND      | ND      | ≤18      |
| 一 六氯苯, μg/L                          | ND       | ND      | ND      | ND      | ≤2       |
| 苯酚, μg/L                             | ND       | ND      | ND      | ND      |          |
| 二(2-氯乙基)醚, μg/L                      | ND       | ND      | ND      | ND      |          |
|                                      | ND       | ND      | ND      | ND      |          |
| 1,3-二氯苯, μg/L                        | ND       | ND      | ND      | ND      |          |
| 1,4-二氯苯, μg/L                        | ND       | ND      | ND      | ND      |          |
| 1,2-二氯苯, μg/L                        | ND       | ND      | ND      | ND      |          |
| 六氯乙烷,μg/L                            | ND       | ND      | ND      | ND      |          |

| 监测地点                 | 罐区2 5# | 苯酐生产装置区<br>6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8# | Ⅳ类评价标准 |
|----------------------|--------|---------------|---------------|-----------------|--------|
| 硝基苯,μg/L             | ND     | ND            | ND            | ND              |        |
| 异佛尔酮,μg/L            | ND     | ND            | ND            | 27.2            |        |
| 2-硝基苯酚, μg/L         | ND     | ND            | ND            | 4.7             |        |
| 2,4-二甲基苯酚, μg/L      | ND     | ND            | ND            | ND              |        |
| 二(2-氯乙氧基)甲烷,<br>μg/L | ND     | ND            | ND            | ND              |        |
|                      | ND     | ND            | ND            | ND              |        |
| 1,2,4-三氯苯, μg/L      | ND     | ND            | ND            | ND              |        |
| 一六氯丁二烯, μg/L         | ND     | ND            | ND            | ND              |        |
| 4-氯-3-甲基苯酚,<br>μg/L  | ND     | ND            | ND            | ND              |        |
|                      | ND     | ND            | ND            | ND              | ≤300   |
| 2,4,5-三氯苯酚, μg/L     | ND     | ND            | ND            | ND              |        |
|                      | ND     | ND            | ND            | ND              |        |
| 邻苯二甲酸二甲酯,<br>μg/L    | ND     | ND            | ND            | ND              |        |
| - 苊烯(二氢苊),μg/L       | ND     | ND            | ND            | ND              |        |
| 3-硝基苯胺, μg/L         | ND     | ND            | ND            | ND              |        |
|                      | ND     | ND            | ND            | ND              |        |
| 4-硝基苯酚, μg/L         | ND     | ND            | ND            | ND              |        |

| 监测地点               | 罐区2 5# | 苯酐生产装置区<br>6# | 苯酐生产装置区<br>7# | 增塑剂生产装置<br>区 8# | IV类评价标准 |
|--------------------|--------|---------------|---------------|-----------------|---------|
| 芴,μg/L             | ND     | ND            | ND            | ND              |         |
| 4-氯苯基苯基醚,<br>μg/L  | ND     | ND            | ND            | ND              |         |
| 2-甲基-4,6-二硝基苯      | ND     | ND            | ND            | ND              |         |
|                    | ND     | ND            | ND            | ND              |         |
| μg/L<br>** σ       | ND     | ND            | ND            | ND              |         |
| <u></u>            | ND     | ND            | ND            | ND              |         |
| $\mu$ g/L          |        |               |               |                 |         |
| 芘, μg/L            | ND     | ND            | ND            | ND              |         |
| 苯并(α)蒽, μg/L       | ND     | ND            | ND            | ND              |         |
| <b>蔗,μg/L</b>      | ND     | ND            | ND            | ND              |         |
| 邻苯二甲酸二正辛<br>酯,µg/L | ND     | ND            | ND            | ND              |         |
| 苯并[k]荧蒽, μg/L      | ND     | ND            | ND            | ND              |         |
|                    | ND     | ND            | ND            | ND              |         |
| 二苯并[a,h]蒽, μg/L    | ND     | ND            | ND            | ND              |         |
| 苯并[g,h,i]苝, μg/L   | ND     | ND            | ND            | ND              |         |

续表 4-1 地下水监测结果统计表

| 类农 <del>4-1</del> 地下水 血侧 3 木 3 り 4 人       |                |                |                  |                |                                      |  |  |  |
|--------------------------------------------|----------------|----------------|------------------|----------------|--------------------------------------|--|--|--|
| 监测地点                                       | 聚酯车间区域 9#      | 环氧树脂区域<br>10#  | 增塑剂生产装置<br>区 11# | 公用区1 12#       | IV类评价标准                              |  |  |  |
| <br>采样日期                                   | 2021.4.25      | 2021.4.26      | 2021.4.25        | 2021.4.25      | _                                    |  |  |  |
|                                            | DX-9-1-1       | DX-10-1-1      | DX-11-1-1        | DX-12-1-1      | _                                    |  |  |  |
| ————样品状态<br>————                           | 无色、无气味、无<br>浮油 | 微黄、无气味、<br>无浮油 | 无色、无气味、无<br>浮油   | 无色、无气味、<br>无浮油 | _                                    |  |  |  |
| 监测项目                                       | 监测结果           | 监测结果           | 监测结果             | 监测结果           | _                                    |  |  |  |
| pH 值,无量纲                                   | 7.11           | 6.68           | 7.26             | 7.19           | 5.5\leqpH\leq6.5<br>8.5\leqpH\leq9.0 |  |  |  |
| 总硬度, mg/L                                  | 478.9          | 693.2          | 491.5            | 547.2          | ≤650                                 |  |  |  |
| 溶解性总固体, mg/L                               | 537            | 599            | 599              | 1273           | ≤2000                                |  |  |  |
| ·<br>· · · · · · · · · · · · · · · · · · · | 65             | ND             | 36               | 208            | ≤350                                 |  |  |  |
|                                            | 38             | 53             | 76               | 356            | ≤350                                 |  |  |  |
| 铁, mg/L                                    | ND             | 16.00          | 0.08             | ND             | ≤2.0                                 |  |  |  |
|                                            | 0.09           | 5.44           | 1.55             | ND             | ≤1.5                                 |  |  |  |
| 铜, mg/L                                    | ND             | ND             | ND               | ND             | ≤1.5                                 |  |  |  |
| 锌, mg/L                                    | ND             | ND             | ND               | ND             | ≤5.0                                 |  |  |  |
| <br>挥发酚, mg/L                              | 0.0004         | 0.0005         | 0.0007           | 0.0010         |                                      |  |  |  |
| 耗氧量, mg/L                                  | 1.8            | 7.1            | 1.5              | 1.8            | ≤10                                  |  |  |  |
| 氨氮, mg/L                                   | 1.70           | 3.41           | 1.62             | 1.94           | ≤1.5                                 |  |  |  |

| <br>监测地点                              | 聚酯车间区域 9# | 环氧树脂区域<br>10#       | 增塑剂生产装置<br>区 11#    | 公用区1 12#            | Ⅳ类评价标准 |
|---------------------------------------|-----------|---------------------|---------------------|---------------------|--------|
| 硫化物, mg/L                             | ND        | ND                  | ND                  | ND                  | ≤0.10  |
| 钠(Na <sup>+</sup> ),mg/L              | 49.1      | 34.5                | 46.6                | 113                 | ≤400   |
| 一 总大肠菌群, MPN/L                        | <20       | <20                 | <20                 | <20                 | ≤1000  |
| 细菌总数, CFU/mL                          | 82        | $4.7 \times 10^{3}$ | $1.7 \times 10^{3}$ | $1.8 \times 10^{3}$ | ≤1000  |
| 亚硝酸盐氮, mg/L                           | ND        | 0.560               | ND                  | ND                  | ≤4.8   |
| 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | ND        | 2.62                | ND                  | 6.94                | ≤30    |
|                                       | ND        | ND                  | ND                  | ND                  | ≤0.1   |
|                                       | 0.528     | 0.477               | 0.474               | 0.594               | ≤2.0   |
| 汞, ug/L                               | 0.17      | 0.31                | 0.18                | 0.09                | ≤2     |
| 砷, ug/L                               | 0.6       | 9.3                 | 1.2                 | 0.8                 | ≤50    |
|                                       | ND        | 0.2                 | ND                  | 0.4                 | ≤10    |
| 六价铬, mg/L                             | ND        | ND                  | ND                  | ND                  | ≤0.10  |
| 铅, ug/L                               | 5         | 2                   | ND                  | 3                   | ≤100   |
| 钡, ug/L                               | 36.4      | 104                 | 27.7                | 71.2                | ≤4000  |
| 镍, mg/L                               | ND        | ND                  | ND                  | ND                  | ≤0.10  |
| 钴, mg/L                               | ND        | ND                  | ND                  | ND                  | ≤0.10  |
| 高锰酸盐指数, mg/L                          | 1.9       | 7.2                 | 1.6                 | 1.9                 |        |
| 钾(K <sup>+</sup> ),mg/L               | 0.475     | 0.595               | 0.335               | 1.69                |        |

| 监测地点                                 | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置<br>区 11# | 公用区1 12# | IV类评价标准 |
|--------------------------------------|-----------|---------------|------------------|----------|---------|
| 钙(Ca <sup>2+</sup> ),mg/L            | 91.3      | 177           | 102              | 151      |         |
| 镁(Mg <sup>2+</sup> ),mg/L            | 16.8      | 35.4          | 17.6             | 12.4     |         |
| 碱度(CO3 <sup>2-</sup> ),mg/L          | 0.000     | 0.000         | 0.000            | 0.000    |         |
| 碱度(HCO3-)mg/L,                       | 381.5     | 603.4         | 362.5            | 193.3    |         |
| 氯化物 (Cl <sup>-</sup> ) mg/L,         | 35.6      | 52.7          | 75.0             | 335      |         |
| 硫酸盐 (SO4 <sup>2-</sup> ), mg/L       | 62.6      | 5.15          | 34.0             | 205      |         |
| 石油类, mg/L                            | 0.05      | 0.07          | 0.03             | 0.05     |         |
|                                      | 43.6      | 29.7          | 96.9             | 10.9     |         |
| ———————————————————————————————————— | ND        | ND            | ND               | ND       | ≤50     |
| ———————————————————————————————————— | 3.8       | ND            | ND               | ND       | ≤120    |
| ———————————————————————————————————— | ND        | ND            | 4.0              | ND       | ≤1400   |
|                                      | ND        | ND            | 2.8              | ND       | ≤500    |
|                                      | 12.1      | 14.0          | 78.2             | 2.6      | ≤40     |
| 1, 1, 1-三氯乙烷, μg/L                   | ND        | ND            | ND               | ND       | ≤4000   |
| 1, 1, 2-三氯乙烷, μg/L                   | 3.9       | ND            | ND               | ND       | ≤60     |
| 1, 2-二氯丙烷, μg/L                      | ND        | ND            | ND               | ND       | ≤60     |
|                                      | 7.5       | ND            | 7.5              | ND       | ≤90     |
| 1,1-二氯乙烯,μg/L                        | ND        | ND            | ND               | ND       | ≤60     |

| 监测地点                                 | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置<br>区 11# | 公用区1 12# | Ⅳ类评价标准 |
|--------------------------------------|-----------|---------------|------------------|----------|--------|
| 反式-1,2-二氯乙烯, μg/L                    | ND        | ND            | ND               | ND       | ≤60    |
| <br>三氯乙烯 <b>,μg</b> /L               | ND        | ND            | ND               | ND       | ≤210   |
| <br>四氯乙烯, μg/L                       | ND        | ND            | ND               | ND       | ≤300   |
|                                      | 3.5       | ND            | ND               | ND       | ≤600   |
| 1, 2, 3-三氯苯, μg/L                    | ND        | ND            | ND               | ND       |        |
|                                      | ND        | ND            | ND               | ND       |        |
|                                      | 3.9       | ND            | ND               | 3.9      | ≤600   |
| ———————————————————————————————————— | 4.4       | 4.5           | 4.4              | 4.4      |        |
| 对-二甲苯, μg/L                          | 4.4       | 4.5           | 4.4              | 4.4      |        |
| 邻-二甲苯, μg/L                          | ND        | ND            | ND               | ND       |        |
| 苯乙烯,μg/L                             | ND        | ND            | ND               | ND       | ≤40    |
|                                      | ND        | ND            | ND               | ND       |        |
|                                      | ND        | ND            | ND               | ND       |        |
|                                      | ND        | ND            | ND               | ND       |        |
| 顺式-1, 2-二氯乙烯, μg/L                   | 4.5       | ND            | ND               | ND       | ≤60    |
| ———————————————————————————————————— | ND        | ND            | ND               | ND       |        |
|                                      | ND        | ND            | ND               | ND       |        |
| 1,1-二氯丙烯,μg/L                        | ND        | ND            | ND               | ND       |        |

| 监测地点                                 | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置区 11# | 公用区1 12# | IV类评价标准 |
|--------------------------------------|-----------|---------------|--------------|----------|---------|
| <br>二溴甲烷,μg/L                        | ND        | ND            | ND           | ND       |         |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |         |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |         |
| 顺式-1, 3-二氯丙烯, μg/L                   | ND        | ND            | ND           | ND       |         |
| 反式-1, 3-二氯丙烯, μg/L                   | ND        | 4.0           | ND           | ND       |         |
|                                      | ND        | ND            | ND           | ND       |         |
|                                      | ND        | ND            | ND           | ND       |         |
|                                      | ND        | ND            | ND           | ND       |         |
| 1,1,1,2-四氯乙烷,μg/L                    | ND        | ND            | ND           | ND       |         |
| <br>溴仿,μg/L                          | ND        | ND            | ND           | ND       |         |
| <br>异丙苯, μg/L                        | ND        | ND            | ND           | ND       |         |
| <br>溴苯, μg/L                         | ND        | ND            | ND           | ND       |         |
| 1,1,2,2-四氯乙烷,μg/L                    | ND        | ND            | ND           | ND       |         |
| 1, 2, 3-三氯丙烷, μg/L                   | ND        | ND            | ND           | ND       |         |
| <br>正丙苯, μg/L                        | ND        | ND            | ND           | ND       |         |
|                                      | ND        | ND            | ND           | ND       |         |
|                                      | ND        | ND            | ND           | ND       |         |
| 1, 3, 5-三甲基苯, μg/L                   | ND        | 4.5           | ND           | ND       |         |

| 监测地点                                 | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置区 11# | 公用区1 12# | Ⅳ类评价标准 |
|--------------------------------------|-----------|---------------|--------------|----------|--------|
|                                      | ND        | ND            | ND           | ND       |        |
| 1, 2, 4-三甲基苯, μg/L                   | ND        | ND            | ND           | ND       |        |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
| <br>正丁基苯, μg/L                       | ND        | ND            | ND           | ND       |        |
| 1, 2-二溴-3-氯丙烷, μg/L                  | ND        | ND            | ND           | ND       |        |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |        |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       | ≤600   |
| 半挥发性有机物,μg/L                         | ND        | ND            | 30.5         | ND       |        |
|                                      | ND        | ND            | ND           | ND       | ≤60    |
|                                      | ND        | ND            | ND           | ND       | ≤30    |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       | ≤3600  |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       | ≤480   |
| 苯并[b]荧蒽, μg/L                        | ND        | ND            | ND           | ND       | ≤8     |

| <br>监测地点                             | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置区 11# | 公用区1 12# | Ⅳ类评价标准 |
|--------------------------------------|-----------|---------------|--------------|----------|--------|
| ———————————————————————————————————— | ND        | ND            | ND           | ND       | ≤0.50  |
| 邻苯二甲酸二(2-乙基己<br>基)酯,μg/L             | ND        | ND            | 18.8         | ND       | ≤300   |
| <br>五氯酚, μg/L                        | ND        | ND            | ND           | ND       | ≤18    |
| <br>六氯苯, μg/L                        | ND        | ND            | ND           | ND       | ≤2     |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
| ———————————————————————————————————— | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
| <br>异佛尔酮, μg/L                       | ND        | ND            | 7.1          | ND       |        |
|                                      | ND        | ND            | 4.6          | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
| 二(2-氯乙氧基)甲烷,μg/L                     | ND        | ND            | ND           | ND       |        |
|                                      | ND        | ND            | ND           | ND       |        |
| 1,2,4-三氯苯, μg/L                      | ND        | ND            | ND           | ND       |        |

| <br>监测地点              | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置<br>区 11# | 公用区1 12# | Ⅳ类评价标准 |
|-----------------------|-----------|---------------|------------------|----------|--------|
| 一<br>六氯丁二烯, μg/L      | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       | ≤300   |
|                       | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
| 邻苯二甲酸二甲酯, μg/L        | ND        | ND            | ND               | ND       |        |
| 一                     | ND        | ND            | ND               | ND       |        |
| 3-硝基苯胺, μg/L          | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
| 芴, μg/L               | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
| 2-甲基-4,6-二硝基苯酚,       | ND        | ND            | ND               | ND       |        |
| μg/L<br>4-溴苯基苯基醚,μg/L | ND        | ND            | ND               | ND       |        |
| 非, μg/L               | ND        | ND            | ND               | ND       |        |
| 邻苯二甲酸二丁酯, μg/L        | ND        | ND            | ND               | ND       |        |
|                       | ND        | ND            | ND               | ND       |        |
| 苯并(α)蒽,μg/L           | ND        | ND            | ND               | ND       |        |

| 监测地点                | 聚酯车间区域 9# | 环氧树脂区域<br>10# | 增塑剂生产装置<br>区 11# | 公用区1 12# | IV类评价标准 |
|---------------------|-----------|---------------|------------------|----------|---------|
|                     | ND        | ND            | ND               | ND       |         |
| 邻苯二甲酸二正辛酯,          | ND        | ND            | ND               | ND       |         |
| $\mu$ g/L           |           |               |                  |          |         |
| 苯并[k]荧蒽,μg/L        | ND        | ND            | ND               | ND       |         |
| 茚并[1,2,3-cd]芘, μg/L | ND        | ND            | ND               | ND       |         |
| 二苯并[a,h]蒽, μg/L     | ND        | ND            | ND               | ND       |         |
| 苯并[g,h,i]菲, μg/L    | ND        | ND            | ND               | ND       |         |

续表 4-1 地下水监测结果统计表

| 关及 <del>*-</del> 1 地下水血侧岩木乳灯花 |                |                |                |                |                                      |  |  |
|-------------------------------|----------------|----------------|----------------|----------------|--------------------------------------|--|--|
| 监测地点                          | 公用区2 13#       | 危废库 14#        | 罐区3 15#        | 稳定剂装置 16#      | IV类评价标准                              |  |  |
| 采样日期                          | 2021.4.25      | 2021.4.25      | 2021.4.25      | 2021.4.26      | _                                    |  |  |
|                               | DX-13-1-1      | DX-14-1-1      | DX-15-1-1      | DX-16-1-1      | _                                    |  |  |
| <br>样品状态                      | 无色、无气味、无<br>浮油 | 无色、无气味、无<br>浮油 | 无色、无气味、无<br>浮油 | 黄色、无气味、<br>无浮油 | _                                    |  |  |
| 监测项目                          | 监测结果           | 监测结果           | 监测结果           | 监测结果           | _                                    |  |  |
| pH 值,无量纲                      | 7.57           | 7.06           | 7.26           | 6.76           | 5.5\leqpH\leq6.5<br>8.5\leqpH\leq9.0 |  |  |
| 总硬度, mg/L                     | 322.5          | 612.6          | 435.3          | 370.5          | ≤650                                 |  |  |
| 溶解性总固体, mg/L                  | 437            | 731            | 465            | 404            | ≤2000                                |  |  |
| 硫酸盐, mg/L                     | 126            | 42             | 58             | ND             | ≤350                                 |  |  |
| 氯化物,mg/L                      | 34             | 97             | 15             | 20             | ≤350                                 |  |  |
| 铁, mg/L                       | ND             | 2.74           | ND             | 2.17           | ≤2.0                                 |  |  |
| 锰, mg/L                       | ND             | 0.36           | ND             | 0.96           | ≤1.5                                 |  |  |
| 铜, mg/L                       | ND             | ND             | ND             | ND             | ≤1.5                                 |  |  |
| 锌, mg/L                       | ND             | ND             | ND             | ND             | ≤5.0                                 |  |  |
| 挥发酚, mg/L                     | 0.0010         | 0.0014         | 0.0007         | ND             |                                      |  |  |
| 耗氧量, mg/L                     | 1.4            | 3.8            | 1.9            | 5.8            | ≤10                                  |  |  |
| 氨氮, mg/L                      | 1.64           | 1.76           | 2.58           | 1.57           | ≤1.5                                 |  |  |

| <br>监测地点                 | 公用区2 13# | 危废库 14#             | 罐区3 15# | 稳定剂装置 16#           | Ⅳ类评价标准 |
|--------------------------|----------|---------------------|---------|---------------------|--------|
| <br>硫化物, mg/L            | ND       | ND                  | ND      | ND                  | ≤0.10  |
| 钠(Na <sup>+</sup> ),mg/L | 27.1     | 91.0                | 57.1    | 20.7                | ≤400   |
| 一 总大肠菌群, MPN/L           | <20      | <20                 | <20     | <20                 | ≤1000  |
| 细菌总数, CFU/mL             | 76       | $1.5 \times 10^{3}$ | 52      | $1.7 \times 10^{3}$ | ≤1000  |
| 亚硝酸盐氮, mg/L              | ND       | ND                  | ND      | 0.365               | ≤4.8   |
|                          | ND       | 2.69                | ND      | ND                  | ≤30    |
| 氰化物, mg/L                | ND       | ND                  | ND      | ND                  | ≤0.1   |
| 氟化物, mg/L                | 0.256    | ND                  | 0.402   | 0.262               | ≤2.0   |
| 汞, ug/L                  | ND       | 0.24                | ND      | ND                  | ≤2     |
| 砷, ug/L                  | 2.1      | 1.7                 | 0.6     | 1.0                 | ≤50    |
| 镉, ug/L                  | ND       | 0.1                 | ND      | 0.1                 | ≤10    |
| 六价铬, mg/L                | ND       | ND                  | ND      | ND                  | ≤0.10  |
| 铅, ug/L                  | 2        | 7                   | ND      | 6                   | ≤100   |
| 钡, ug/L                  | 29.6     | 106                 | 30.4    | 36.7                | ≤4000  |
|                          | ND       | ND                  | ND      | ND                  | ≤0.10  |
| 钴, mg/L                  | ND       | ND                  | ND      | ND                  | ≤0.10  |
| 高锰酸盐指数, mg/L             | 1.3      | 3.9                 | 2.0     | 6.0                 |        |
| 钾(K+),mg/L               | 0.299    | 1.02                | 0.666   | 0.669               |        |

| 监测地点                                 | 公用区 2 13# | 危废库 14# | 罐区 3 15# | 稳定剂装置 16# | IV类评价标准 |
|--------------------------------------|-----------|---------|----------|-----------|---------|
| 钙(Ca <sup>2+</sup> ),mg/L            | 65.8      | 167     | 116      | 103       |         |
| 镁(Mg <sup>2+</sup> ),mg/L            | 6.2       | 25.4    | 17.6     | 18.0      |         |
| 碱度(CO3 <sup>2-</sup> ),mg/L          | 0.000     | 0.000   | 0.000    | 0.000     |         |
| 碱度(HCO3 <sup>-</sup> )mg/L,          | 168.2     | 494.5   | 345.5    | 333.9     |         |
| 氯化物(Cl <sup>-</sup> )mg/L,           | 32.0      | 95.1    | 13.3     | 18.4      |         |
| 硫酸盐(SO4 <sup>2-</sup> ), mg/L        | 123       | 41.5    | 55.9     | ND        |         |
| 石油类, mg/L                            | 0.06      | 0.04    | 0.05     | 0.03      |         |
|                                      | 7.0       | 14.4    | 19.9     | 24.9      |         |
| 四氯化碳,μg/L                            | ND        | ND      | ND       | ND        | ≤50     |
| 苯, μg/L                              | ND        | ND      | ND       | ND        | ≤120    |
| ———————————————————————————————————— | ND        | ND      | ND       | 4.0       | ≤1400   |
| 二氯甲烷,μg/L                            | ND        | ND      | ND       | 2.7       | ≤500    |
| 1, 2-二氯乙烷, μg/L                      | 2.6       | 6.1     | 15.5     | 4.6       | ≤40     |
| 1, 1, 1-三氯乙烷, μg/L                   | ND        | ND      | ND       | ND        | ≤4000   |
| 1, 1, 2-三氯乙烷, μg/L                   | ND        | ND      | ND       | ND        | ≤60     |
| 1, 2-二氯丙烷, μg/L                      | ND        | ND      | ND       | ND        | ≤60     |
|                                      | ND        | ND      | ND       | ND        | ≤90     |
| 1,1-二氯乙烯,μg/L                        | ND        | ND      | ND       | ND        | ≤60     |

| 监测地点                                 | 公用区 2 13# | 危废库 14# | 罐区 3 15# | 稳定剂装置 16# | Ⅳ类评价标准 |
|--------------------------------------|-----------|---------|----------|-----------|--------|
| 反式-1,2-二氯乙烯,μg/L                     | ND        | ND      | ND       | ND        | ≤60    |
| <br>三氯乙烯 <b>,μg</b> /L               | ND        | ND      | ND       | ND        | ≤210   |
| 四氯乙烯,μg/L                            | ND        | ND      | ND       | ND        | ≤300   |
| 氯苯,μg/L                              | ND        | ND      | ND       | ND        | ≤600   |
| 1, 2, 3-三氯苯, μg/L                    | ND        | ND      | ND       | ND        |        |
| 1, 2, 4-三氯苯, μg/L                    | ND        | ND      | ND       | ND        |        |
| 乙苯, μg/L                             | ND        | 3.9     | ND       | ND        | ≤600   |
| 间-二甲苯,μg/L                           | 4.4       | 4.4     | 4.4      | 4.5       |        |
| 对-二甲苯, μg/L                          | 4.4       | 4.4     | 4.4      | 4.5       |        |
| 邻-二甲苯, μg/L                          | ND        | ND      | ND       | ND        |        |
| 苯乙烯,μg/L                             | ND        | ND      | ND       | ND        | ≤40    |
| 1, 1-二氯乙烷, μg/L                      | ND        | ND      | ND       | ND        |        |
| 氯丁二烯,μg/L                            | ND        | ND      | ND       | ND        |        |
| 2, 2-二氯丙烷, μg/L                      | ND        | ND      | ND       | ND        |        |
| 顺式-1,2-二氯乙烯,μg/L                     | ND        | ND      | ND       | ND        | ≤60    |
| ———————————————————————————————————— | ND        | ND      | ND       | ND        |        |
|                                      | ND        | ND      | ND       | ND        |        |
| 1,1-二氯丙烯,μg/L                        | ND        | ND      | ND       | ND        |        |

| 监测地点                                 | 公用区 2 13# | 危废库 14# | 罐区 3 15# | 稳定剂装置 16# | Ⅳ类评价标准 |
|--------------------------------------|-----------|---------|----------|-----------|--------|
|                                      | ND        | ND      | ND       | ND        |        |
| 一溴二氯甲烷,μg/L                          | ND        | ND      | ND       | ND        |        |
| ———————————————————————————————————— | ND        | ND      | ND       | ND        |        |
| 顺式-1,3-二氯丙烯,μg/L                     | ND        | ND      | ND       | ND        |        |
| 反式-1,3-二氯丙烯,μg/L                     | ND        | ND      | ND       | ND        |        |
| 1, 3-二氯丙烷, μg/L                      | ND        | ND      | ND       | ND        |        |
| 二溴氯甲烷,μg/L                           | ND        | ND      | ND       | ND        |        |
| 1, 2-二溴乙烷, μg/L                      | ND        | ND      | ND       | ND        |        |
| 1, 1, 1, 2-四氯乙烷, μg/L                | ND        | ND      | ND       | ND        |        |
| 溴仿, μg/L                             | ND        | ND      | ND       | ND        |        |
| 异丙苯,μg/L                             | ND        | ND      | ND       | ND        |        |
| 溴苯, μg/L                             | ND        | ND      | ND       | ND        |        |
| 1, 1, 2, 2-四氯乙烷, μg/L                | ND        | ND      | ND       | ND        |        |
| 1, 2, 3-三氯丙烷, μg/L                   | ND        | ND      | ND       | ND        |        |
| 正丙苯,μg/L                             | ND        | ND      | ND       | ND        |        |
| 2-氯甲苯, μg/L                          | ND        | ND      | ND       | ND        |        |
| 4-氯甲苯, μg/L                          | ND        | ND      | ND       | ND        |        |
| 1, 3, 5-三甲基苯, μg/L                   | ND        | ND      | ND       | ND        |        |

| 监测地点                | 公用区 2 13# | 危废库 14# | 罐区3 15# | 稳定剂装置 16# | IV类评价标准 |
|---------------------|-----------|---------|---------|-----------|---------|
| 叔丁基苯,μg/L           | ND        | ND      | ND      | ND        |         |
| 1, 2, 4-三甲基苯, μg/L  | ND        | ND      | ND      | 3.9       |         |
| 一一件丁基苯,μg/L         | ND        | ND      | ND      | 5.2       |         |
| 1, 3-二氯苯, μg/L      | ND        | ND      | ND      | ND        |         |
| 4-异丙基甲苯, μg/L       | ND        | ND      | ND      | ND        |         |
| 1, 4-二氯苯, μg/L      | ND        | ND      | ND      | ND        |         |
| 1, 2-二氯苯, μg/L      | ND        | ND      | ND      | ND        |         |
| 正丁基苯,μg/L           | ND        | ND      | ND      | ND        |         |
| 1, 2-二溴-3-氯丙烷, μg/L | ND        | ND      | ND      | ND        |         |
| 六氯丁二烯, μg/L         | ND        | ND      | ND      | ND        |         |
| 萘,μg/L              | ND        | ND      | ND      | ND        | ≤600    |
| 半挥发性有机物,μg/L        | ND        | ND      | ND      | ND        |         |
| 2,4-二硝基甲苯, μg/L     | ND        | ND      | ND      | ND        | ≤60     |
| 2,6-二硝基甲苯, μg/L     | ND        | ND      | ND      | ND        | ≤30     |
| 萘,μg/L              | ND        | ND      | ND      | ND        |         |
| 蒽,μg/L              | ND        | ND      | ND      | ND        | ≤3600   |
| 荧蒽, μg/L            | ND        | ND      | ND      | ND        | ≤480    |
| 苯并[b]荧蒽, μg/L       | ND        | ND      | ND      | ND        | ≤8      |

| 监测地点                                 | 公用区2 13# | 危废库 14# | 罐区3 15# | 稳定剂装置 16# | Ⅳ类评价标准 |
|--------------------------------------|----------|---------|---------|-----------|--------|
| ———————————————————————————————————— | ND       | ND      | ND      | ND        | ≤0.50  |
| 邻苯二甲酸二(2-乙基己<br>基)酯,μg/L             | ND       | ND      | ND      | ND        | ≤300   |
| 五氯酚, μg/L                            | ND       | ND      | ND      | ND        | ≤18    |
|                                      | ND       | ND      | ND      | ND        | ≤2     |
| 苯酚, μg/L                             | ND       | ND      | ND      | ND        |        |
| 二(2-氯乙基)醚, μg/L                      | ND       | ND      | ND      | ND        |        |
| 2-氯苯酚, μg/L                          | ND       | ND      | ND      | ND        |        |
| 1,3-二氯苯,μg/L                         | ND       | ND      | ND      | ND        |        |
| 1,4-二氯苯,μg/L                         | ND       | ND      | ND      | ND        |        |
| 1,2-二氯苯,μg/L                         | ND       | ND      | ND      | ND        |        |
| 六氯乙烷,μg/L                            | ND       | ND      | ND      | ND        |        |
|                                      | ND       | ND      | ND      | ND        |        |
| 异佛尔酮, μg/L                           | ND       | ND      | ND      | ND        |        |
|                                      | ND       | ND      | ND      | ND        |        |
|                                      | ND       | ND      | ND      | ND        |        |
| 二(2-氯乙氧基)甲烷,μg/L                     | ND       | ND      | ND      | ND        |        |
|                                      | ND       | ND      | ND      | ND        |        |
| 1,2,4-三氯苯, μg/L                      | ND       | ND      | ND      | ND        |        |

| 监测地点                    | 公用区 2 13# | 危废库 14# | 罐区3 15# | 稳定剂装置 16# | Ⅳ类评价标准 |
|-------------------------|-----------|---------|---------|-----------|--------|
|                         | ND        | ND      | ND      | ND        |        |
| 4-氯-3-甲基苯酚, μg/L        | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        | ≤300   |
|                         | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        |        |
| 邻苯二甲酸二甲酯, μg/L          | ND        | ND      | ND      | ND        |        |
| 一<br>苊烯(二氢苊),μg/L       | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        |        |
| 芴,μg/L                  | ND        | ND      | ND      | ND        |        |
|                         | ND        | ND      | ND      | ND        |        |
| 2-甲基-4,6-二硝基苯酚,<br>μg/L | ND        | ND      | ND      | ND        |        |
| 4-溴苯基苯基醚, μg/L          | ND        | ND      | ND      | ND        |        |
| 非, μg/L                 | ND        | ND      | ND      | ND        |        |
| 邻苯二甲酸二丁酯, μg/L          | ND        | ND      | ND      | ND        |        |
| 芘, μg/L                 | ND        | ND      | ND      | ND        |        |
| 苯并(α)蒽,μg/L             | ND        | ND      | ND      | ND        |        |

| 监测地点             | 公用区 2 13# | 危废库 14# | 罐区 3 15# | 稳定剂装置 16# | IV类评价标准 |
|------------------|-----------|---------|----------|-----------|---------|
| <br>薜, μg/L      | ND        | ND      | ND       | ND        |         |
|                  | ND        | ND      | ND       | ND        |         |
| — 苯并[k]荧蒽, μg/L  | ND        | ND      | ND       | ND        |         |
|                  | ND        | ND      | ND       | ND        |         |
|                  | ND        | ND      | ND       | ND        |         |
| 苯并[g,h,i]菲, μg/L | ND        | ND      | ND       | ND        |         |

续表 4-1 地下水监测结果统计表

| 笑            |                |                |                |                |                                                                |  |  |
|--------------|----------------|----------------|----------------|----------------|----------------------------------------------------------------|--|--|
| 监测地点         | 仓库 1 17#       | 仓库 1 18#       | 仓库 2 19#       | 停车场 20#        | Ⅳ类评价标准                                                         |  |  |
| <br>采样日期     | 2021.4.26      | 2021.4.26      | 2021.4.26      | 2021.4.26      | _                                                              |  |  |
| ————样品编号     | DX-17-1-1      | DX-18-1-1      | DX-19-1-1      | DX-20-1-1      | _                                                              |  |  |
| 样品状态         | 黄色、无气味、无<br>浮油 | 微黄、无气味、无<br>浮油 | 黄色、无气味、无<br>浮油 | 灰色、无气味、无<br>浮油 | _                                                              |  |  |
| <br>监测项目     | 监测结果           | 监测结果           | 监测结果           | 监测结果           | _                                                              |  |  |
| pH 值,无量纲     | 6.69           | 6.63           | 6.81           | 6.70           | 5.5\leqpH\left<6.5<br>8.5\left <ph\leq9.0< td=""></ph\leq9.0<> |  |  |
| 总硬度, mg/L    | 577.1          | 670.2          | 370.9          | 409.7          | ≤650                                                           |  |  |
| 溶解性总固体, mg/L | 604            | 1736           | 391            | 382            | ≤2000                                                          |  |  |
|              | 17             | ND             | ND             | ND             | ≤350                                                           |  |  |
| 氯化物, mg/L    | 53             | 55             | 16             | 19             | ≤350                                                           |  |  |
| 铁, mg/L      | 2.90           | 18.52          | 1.12           | 1.28           | ≤2.0                                                           |  |  |
| 锰, mg/L      | 3.01           | 3.87           | 1.05           | 1.05           | ≤1.5                                                           |  |  |
| 铜, mg/L      | ND             | ND             | ND             | ND             | ≤1.5                                                           |  |  |
| 锌, mg/L      | ND             | ND             | ND             | ND             | ≤5.0                                                           |  |  |
| 挥发酚, mg/L    | ND             | 0.0008         | 0.0012         | 0.0008         |                                                                |  |  |
| 耗氧量, mg/L    | 6.7            | 7.7            | 7.5            | 13.7           | ≤10                                                            |  |  |
| 氨氮, mg/L     | 2.51           | 3.65           | 1.51           | 1.49           | ≤1.5                                                           |  |  |

| 监测地点                      | 仓库 1 17#            | 仓库 1 18#          | 仓库 2 19#          | 停车场 20#             | Ⅳ类评价标准 |
|---------------------------|---------------------|-------------------|-------------------|---------------------|--------|
| 硫化物, mg/L                 | ND                  | ND                | ND                | ND                  | ≤0.10  |
| 钠(Na+), mg/L              | 32.7                | 51.0              | 24.1              | 49.7                | ≤400   |
| 总大肠菌群, MPN/L              | <20                 | <20               | <20               | <20                 | ≤1000  |
| 细菌总数, CFU/mL              | $1.5 \times 10^{2}$ | $1.5 \times 10^3$ | $1.2 \times 10^2$ | $3.0 \times 10^{2}$ | ≤1000  |
| 亚硝酸盐氮, mg/L               | 2.66                | ND                | ND                | ND                  | ≤4.8   |
| 硝酸盐氮, mg/L                | ND                  | ND                | ND                | ND                  | ≤30    |
| 氰化物, mg/L                 | ND                  | ND                | ND                | ND                  | ≤0.1   |
| 氟化物, mg/L                 | 0.376               | 0.393             | 0.238             | 0.202               | ≤2.0   |
| 汞, ug/L                   | ND                  | ND                | ND                | ND                  | ≤2     |
| 砷, ug/L                   | 4.1                 | 7.8               | 1.4               | 2.0                 | ≤50    |
| 镉 <b>,ug</b> /L           | 0.1                 | 0.1               | 0.1               | 0.2                 | ≤10    |
| 六价铬, mg/L                 | ND                  | ND                | ND                | ND                  | ≤0.10  |
| 铅, ug/L                   | 2                   | 4                 | 3                 | 4                   | ≤100   |
| 钡, ug/L                   | 65.7                | 109               | 48.5              | 63.1                | ≤4000  |
| 镍, mg/L                   | ND                  | ND                | ND                | ND                  | ≤0.10  |
| 钴, mg/L                   | ND                  | ND                | ND                | ND                  | ≤0.10  |
| 高锰酸盐指数, mg/L              | 6.9                 | 7.8               | 7.7               | 13.8                |        |
| 钾(K+),mg/L                | 1.28                | 0.654             | 0.708             | 0.715               |        |
| 钙(Ca <sup>2+</sup> ),mg/L | 148                 | 187               | 101               | 96.6                |        |

| <br>监测地点                             | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
| 镁(Mg <sup>2+</sup> ),mg/L            | 30.8     | 35.6     | 15.8     | 16.2    |         |
| 碱度(CO3 <sup>2-</sup> ),mg/L          | 0.000    | 0.000    | 0.000    | 0.000   |         |
| 碱度(HCO <sub>3</sub> -)mg/L,          | 514.6    | 571.4    | 338.0    | 329.4   |         |
| 氯化物(Cl <sup>-</sup> )mg/L,           | 52.4     | 54.9     | 15.4     | 18.0    |         |
| 硫酸盐(SO4 <sup>2-</sup> ),mg/L         | 15.7     | 6.62     | ND       | ND      |         |
| 石油类, mg/L                            | 0.05     | 0.06     | 0.03     | 0.03    |         |
|                                      | 38.4     | 32.0     | 21.2     | 21.2    |         |
|                                      | ND       | ND       | ND       | ND      | ≤50     |
| 苯, μg/L                              | ND       | ND       | ND       | ND      | ≤120    |
| ———————————————————————————————————— | 4.0      | 4.0      | 4.0      | 4.0     | ≤1400   |
|                                      | 2.7      | 2.7      | ND       | ND      | ≤500    |
|                                      | 13.0     | 13.1     | 4.9      | 4.8     | ≤40     |
|                                      | ND       | ND       | ND       | ND      | ≤4000   |
|                                      | 3.2      | ND       | ND       | ND      | ≤60     |
|                                      | ND       | ND       | ND       | ND      | ≤60     |
|                                      | 7.6      | ND       | ND       | ND      | ≤90     |
|                                      | ND       | ND       | ND       | ND      | ≤60     |
| 反式-1, 2-二氯乙烯, μg/L                   | ND       | ND       | ND       | ND      | ≤60     |

| <br>监测地点                             | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
| ———————————————————————————————————— | ND       | ND       | ND       | ND      | ≤210    |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      | ≤300    |
|                                      | 3.5      | ND       | ND       | ND      | ≤600    |
| 1, 2, 3-三氯苯, μg/L                    | ND       | ND       | ND       | ND      |         |
| 1, 2, 4-三氯苯, μg/L                    | ND       | ND       | ND       | ND      |         |
|                                      | ND       | 3.9      | 3.9      | ND      | ≤600    |
| ———————————————————————————————————— | 4.4      | 4.4      | 4.5      | 4.5     |         |
| 对-二甲苯, μg/L                          | 4.4      | 4.4      | 4.5      | 4.5     |         |
| 邻-二甲苯, μg/L                          | ND       | ND       | ND       | 4.0     |         |
| 苯乙烯,μg/L                             | ND       | ND       | ND       | ND      | ≤40     |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 2, 2-二氯丙烷, μg/L                      | ND       | ND       | ND       | ND      |         |
| 顺式-1, 2-二氯乙烯, μg/L                   | ND       | ND       | ND       | ND      | ≤60     |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 1, 1-二氯丙烯, μg/L                      | ND       | ND       | ND       | ND      |         |
| 二溴甲烷,μg/L                            | ND       | ND       | ND       | ND      |         |

| 监测地点                                 | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | Ⅳ类评价标准 |
|--------------------------------------|----------|----------|----------|---------|--------|
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
| 顺式-1, 3-二氯丙烯, μg/L                   | ND       | ND       | ND       | ND      |        |
| 反式-1, 3-二氯丙烯, μg/L                   | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
| 1, 1, 1, 2-四氯乙烷, μg/L                | ND       | ND       | ND       | ND      |        |
| <br>溴仿,μg/L                          | ND       | ND       | ND       | ND      |        |
| 异丙苯,μg/L                             | ND       | ND       | ND       | ND      |        |
| <br>溴苯, μg/L                         | ND       | ND       | ND       | ND      |        |
| 1, 1, 2, 2-四氯乙烷, μg/L                | ND       | ND       | ND       | ND      |        |
| 1, 2, 3-三氯丙烷, μg/L                   | ND       | ND       | ND       | ND      |        |
| <br>正丙苯, μg/L                        | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
|                                      | ND       | ND       | ND       | ND      |        |
| 1, 3, 5-三甲基苯, μg/L                   | ND       | ND       | ND       | ND      |        |
| 叔丁基苯,μg/L                            | ND       | ND       | ND       | ND      |        |

| 监测地点                                 | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
| 1, 2, 4-三甲基苯, μg/L                   | ND       | 3.9      | 3.9      | 3.9     |         |
| 一一一件丁基苯,μg/L                         | ND       | ND       | ND       | ND      |         |
| 1, 3-二氯苯, μg/L                       | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 1, 2-二氯苯, μg/L                       | ND       | ND       | ND       | ND      |         |
| <br>正丁基苯, μg/L                       | ND       | ND       | ND       | ND      |         |
| 1, 2-二溴-3-氯丙烷, μg/L                  | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      | ≤600    |
| — 半挥发性有机物,μg/L                       | 4.0      | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      | ≤60     |
|                                      | ND       | ND       | ND       | ND      | ≤30     |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      | ≤3600   |
|                                      | ND       | ND       | ND       | ND      | ≤480    |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      | ≤8      |
| 苯并[α]芘, μg/L                         | ND       | ND       | ND       | ND      | ≤0.50   |

| 监测地点                                 | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
| 邻苯二甲酸二 (2-乙基己<br>基) 酯, μg/L          | 4.0      | ND       | ND       | ND      | ≤300    |
| 五氯酚, μg/L                            | ND       | ND       | ND       | ND      | ≤18     |
|                                      | ND       | ND       | ND       | ND      | ≤2      |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 1,3-二氯苯, μg/L                        | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
| 异佛尔酮,μg/L                            | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 六氯丁二烯, μg/L                          | ND       | ND       | ND       | ND      |         |

| <br>监测地点                             | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      | ≤300    |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 一 邻苯二甲酸二甲酯, μg/L                     | ND       | ND       | ND       | ND      |         |
| 一 苊烯(二氢苊),μg/L                       | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 2-甲基-4,6-二硝基苯酚,<br>μg/L              | ND       | ND       | ND       | ND      |         |
| 4-溴苯基苯基醚, μg/L                       | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
| 一邻苯二甲酸二丁酯, μg/L                      | ND       | ND       | ND       | ND      |         |
| 苉, μg/L                              | ND       | ND       | ND       | ND      |         |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
| <b></b>                              | ND       | ND       | ND       | ND      |         |

| 监测地点                                 | 仓库 1 17# | 仓库 1 18# | 仓库 2 19# | 停车场 20# | IV类评价标准 |
|--------------------------------------|----------|----------|----------|---------|---------|
| 邻苯二甲酸二正辛酯,μg/L                       | ND       | ND       | ND       | ND      |         |
| ———————————————————————————————————— | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |
|                                      | ND       | ND       | ND       | ND      |         |

续表 4-1 地下水监测结果统计表

|                  | 大水平1 池 1 水     | 业例和不利可从        |                                       |
|------------------|----------------|----------------|---------------------------------------|
| 监测地点             | 停车场 21#        | 办公区 22#        | Ⅳ类评价标准                                |
| 采样日期             | 2021.4.26      | 2021.4.26      | _                                     |
| ————样品编号         | DX-21-1-1      | DX-22-1-1      | _                                     |
| ————样品状态<br>———— | 黄色、无气味、无<br>浮油 | 无色、无气味、无<br>浮油 | _                                     |
| 监测项目             | 监测结果           | 监测结果           | _                                     |
| pH 值,无量纲         | 6.81           | 7.05           | 5.5\left pH < 6.5  8.5 < pH \left 9.0 |
| 总硬度, mg/L        | 589.3          | 424.9          | ≤650                                  |
| 溶解性总固体, mg/L     | 613            | 333            | ≤2000                                 |
| 硫酸盐, mg/L        | 19             | 26             | ≤350                                  |
| 氯化物,mg/L         | 51             | 13             | ≤350                                  |
| 铁, mg/L          | 4.10           | ND             | ≤2.0                                  |
| 锰, mg/L          | 4.48           | ND             | ≤1.5                                  |
| 铜, mg/L          | ND             | ND             | ≤1.5                                  |
| 锌, mg/L          | ND             | ND             | ≤5.0                                  |
| 挥发酚, mg/L        | 0.0010         | 0.0004         |                                       |
| 耗氧量, mg/L        | 5.8            | 1.3            | ≤10                                   |
| 氨氮, mg/L         | 2.10           | 2.28           | ≤1.5                                  |

| 监测地点                     | 停车场 21#             | 办公区 22#           | Ⅳ类评价标准 |
|--------------------------|---------------------|-------------------|--------|
| 硫化物, mg/L                | ND                  | ND                | ≤0.10  |
| 钠(Na <sup>+</sup> ),mg/L | 49.6                | 32.0              | ≤400   |
| 总大肠菌群, MPN/L             | <20                 | 110               | ≤1000  |
| 细菌总数, CFU/mL             | $1.8 \times 10^{2}$ | $1.2 \times 10^2$ | ≤1000  |
| 亚硝酸盐氮, mg/L              | ND                  | ND                | ≤4.8   |
| 硝酸盐氮, mg/L               | ND                  | 1.26              | ≤30    |
| 氰化物, mg/L                | ND                  | ND                | ≤0.1   |
| 氟化物, mg/L                | 0.367               | 0.376             | ≤2.0   |
| 汞, ug/L                  | ND                  | ND                | ≤2     |
| 砷, ug/L                  | 8.9                 | 0.7               | ≤50    |
| 镉, ug/L                  | 0.1                 | ND                | ≤10    |
| 六价铬, mg/L                | ND                  | ND                | ≤0.10  |
| 铅, ug/L                  | 4                   | 19                | ≤100   |
| 钡, ug/L                  | 61.4                | 27.9              | ≤4000  |
| 镍, mg/L                  | ND                  | ND                | ≤0.10  |
| 钴, mg/L                  | ND                  | ND                | ≤0.10  |
| 高锰酸盐指数,mg/L              | 5.9                 | 1.4               |        |
| 钾(K+),mg/L               | 0.755               | 0.148             |        |

| 监测地点                         | 停车场 21# | 办公区 22# | IV类评价标准 |
|------------------------------|---------|---------|---------|
| 钙(Ca <sup>2+</sup> ),mg/L    | 167     | 59.9    |         |
| 镁 (Mg <sup>2+</sup> ), mg/L  | 31.4    | 7.30    |         |
| 碱度(CO3 <sup>2-</sup> ),mg/L  | 0.000   | 0.000   |         |
| 碱度(HCO3 <sup>-</sup> )mg/L,  | 505.4   | 247.3   |         |
| 氯化物(Cl <sup>-</sup> )mg/L,   | 50.7    | 12.0    |         |
| 硫酸盐(SO4 <sup>2-</sup> ),mg/L | 17.3    | 24.7    |         |
| 石油类, mg/L                    | 0.04    | 0.04    |         |
| 挥发性有机物,μg/L                  | 35.5    | 7.0     |         |
| 四氯化碳,μg/L                    | ND      | ND      | ≤50     |
| 苯, μg/L                      | ND      | ND      | ≤120    |
| 甲苯, μg/L                     | 4.0     | ND      | ≤1400   |
| 二氯甲烷,μg/L                    | 2.7     | ND      | ≤500    |
| 1, 2-二氯乙烷, μg/L              | 13.9    | 2.6     | ≤40     |
| 1, 1, 1-三氯乙烷, μg/L           | ND      | ND      | ≤4000   |
| 1, 1, 2-三氯乙烷, μg/L           | 3.0     | ND      | ≤60     |
| 1, 2-二氯丙烷, μg/L              | ND      | ND      | ≤60     |
| 氯乙烯,μg/L                     | 7.5     | ND      | ≤90     |
| 1,1-二氯乙烯,μg/L                | ND      | ND      | ≤60     |

| 监测地点                 | 停车场 21# | 办公区 22# | IV类评价标准 |
|----------------------|---------|---------|---------|
| 反式-1,2-二氯乙烯,<br>µg/L | ND      | ND      | ≤60     |
| 三氯乙烯,μg/L            | ND      | ND      | ≤210    |
| 四氯乙烯,μg/L            | ND      | ND      | ≤300    |
| 氯苯, μg/L             | ND      | ND      | ≤600    |
| 1, 2, 3-三氯苯, μg/L    | ND      | ND      |         |
| 1, 2, 4-三氯苯, μg/L    | ND      | ND      |         |
| 乙苯, μg/L             | ND      | ND      | ≤600    |
| 间-二甲苯, μg/L          | 4.4     | 4.4     |         |
| 对-二甲苯,μg/L           | 4.4     | 4.4     |         |
| 邻-二甲苯, μg/L          | ND      | ND      |         |
| 苯乙烯,μg/L             | ND      | ND      | ≤40     |
| 1,1-二氯乙烷,μg/L        | ND      | ND      |         |
| 氯丁二烯,μg/L            | ND      | ND      |         |
| 2, 2-二氯丙烷, μg/L      | ND      | ND      |         |
| 顺式-1,2-二氯乙烯,<br>μg/L | ND      | ND      | ≤60     |
| · 溴氯甲烷,μg/L          | ND      | ND      |         |
| 氯仿, μg/L             | ND      | ND      |         |
| 1, 1-二氯丙烯, μg/L      | ND      | ND      |         |

| 监测地点                         | 停车场 21# | 办公区 22# | IV类评价标准 |
|------------------------------|---------|---------|---------|
| 二溴甲烷,μg/L                    | ND      | ND      |         |
| 一溴二氯甲烷,μg/L                  | ND      | ND      |         |
| 环氧氯丙烷,μg/L                   | ND      | ND      |         |
| 顺式-1,3-二氯丙烯,<br>μg/L         | ND      | ND      |         |
| μg/L<br>反式-1,3-二氯丙烯,<br>μg/L | ND      | ND      |         |
| 1, 3-二氯丙烷, μg/L              | ND      | ND      |         |
| 二溴氯甲烷,μg/L                   | ND      | ND      |         |
| 1,2-二溴乙烷, μg/L               | ND      | ND      |         |
| 1, 1, 1, 2-四氯乙烷,<br>μg/L     | ND      | ND      |         |
| 溴仿,μg/L                      | ND      | ND      |         |
| 异丙苯, μg/L                    | ND      | ND      |         |
| 溴苯,μg/L                      | ND      | ND      |         |
| 1, 1, 2, 2-四氯乙烷,<br>µg/L     | ND      | ND      |         |
| 1, 2, 3-三氯丙烷, μg/L           | ND      | ND      |         |
| 正丙苯, μg/L                    | ND      | ND      |         |
| 2-氯甲苯, μg/L                  | ND      | ND      |         |
| 4-氯甲苯, μg/L                  | ND      | ND      |         |

| 监测地点                                               | 停车场 21# | 办公区 22# | IV类评价标准 |
|----------------------------------------------------|---------|---------|---------|
| 1,3,5-三甲基苯,μg/L                                    | ND      | ND      |         |
|                                                    | ND      | ND      |         |
| 1, 2, 4-三甲基苯, μg/L                                 | ND      | ND      |         |
| 一 仲丁基苯,μg/L                                        | ND      | ND      |         |
|                                                    | ND      | ND      |         |
| 正丁基苯,μg/L                                          | ND      | ND      |         |
| 1, 2-二溴-3-氯丙烷,                                     | ND      | ND      |         |
| μg/L                                               | ND      | ND      |         |
| 六氯丁二烯,μg/L<br>———————————————————————————————————— | TVD     | ND      |         |
| 萘,μg/L                                             | ND      | ND      | ≤600    |
| 半挥发性有机物,μg/L                                       | ND      | 3.3     |         |
|                                                    | ND      | ND      | ≤60     |
|                                                    | ND      | ND      | ≤30     |
| ————————————————————————————————————               | ND      | ND      |         |
|                                                    | ND      | ND      | ≤3600   |
|                                                    | ND      | ND      | ≤480    |

| 监测地点                                 | 停车场 21# | 办公区 22# | IV类评价标准 |
|--------------------------------------|---------|---------|---------|
| ——苯并[b]荧蒽, μg/L                      | ND      | ND      | ≤8      |
| ———————————————————————————————————— | ND      | ND      | ≤0.50   |
| 邻苯二甲酸二(2-乙基己<br>基)酯,μg/L             | ND      | 3.3     | ≤300    |
| <br>五氯酚, μg/L                        | ND      | ND      | ≤18     |
| —                                    | ND      | ND      | ≤2      |
|                                      | ND      | ND      |         |
| ——六氯乙烷 <b>, μg/</b> L                | ND      | ND      |         |
|                                      | ND      | ND      |         |
| 异佛尔酮, μg/L                           | ND      | ND      |         |
|                                      | ND      | ND      |         |
|                                      | ND      | ND      |         |
| 二(2-氯乙氧基)甲烷,                         | ND      | ND      |         |
| μg/L<br>2,4-二氯苯酚,μg/L                | ND      | ND      |         |

| 监测地点                    | 停车场 21# | 办公区 22# | IV类评价标准 |
|-------------------------|---------|---------|---------|
|                         | ND      | ND      |         |
| 六氯丁二烯, μg/L             | ND      | ND      |         |
| 4-氯-3-甲基苯酚, μg/L        | ND      | ND      |         |
| 2,4,6-三氯苯酚, μg/L        | ND      | ND      | ≤300    |
| 2,4,5-三氯苯酚, μg/L        | ND      | ND      |         |
| 2-硝基苯胺, μg/L            | ND      | ND      |         |
| 邻苯二甲酸二甲酯,<br>μg/L       | ND      | ND      |         |
| 苊烯(二氢苊),μg/L            | ND      | ND      |         |
| 3-硝基苯胺, μg/L            | ND      | ND      |         |
| 苊,μg/L                  | ND      | ND      |         |
| 4-硝基苯酚, μg/L            | ND      | ND      |         |
| 芴,μg/L                  | ND      | ND      |         |
| 4-氯苯基苯基醚, μg/L          | ND      | ND      |         |
| 2-甲基-4,6-二硝基苯酚,<br>μg/L | ND      | ND      |         |
| 4-溴苯基苯基醚, μg/L          | ND      | ND      |         |
| 菲, μg/L                 | ND      | ND      |         |
| 邻苯二甲酸二丁酯,<br>μg/L       | ND      | ND      |         |

| <br>监测地点                             | 停车场 21# | 办公区 22# | IV类评价标准 |
|--------------------------------------|---------|---------|---------|
| <br>芘, μg/L                          | ND      | ND      |         |
| ———————————————————————————————————— | ND      | ND      |         |
|                                      | ND      | ND      |         |
| 邻苯二甲酸二正辛酯,                           | ND      | ND      |         |
| μg/L                                 |         |         |         |
|                                      | ND      | ND      |         |
| 茚并[1,2,3-cd]芘, μg/L                  | ND      | ND      |         |
|                                      | ND      | ND      |         |
| 苯并[g,h,i]菲, μg/L                     | ND      | ND      |         |

表 4-2 土壤监测数据统计表

|        | 农 4-2 工 集              |            |            |            |          |          |          |          |             |  |  |  |  |
|--------|------------------------|------------|------------|------------|----------|----------|----------|----------|-------------|--|--|--|--|
|        |                        | <b>冶一米</b> | 北厂区储<br>罐区 | 北厂区储<br>罐区 | 罐区1      | 罐区1      | 罐区2      | 罐区2      | 苯酐生产<br>装置区 |  |  |  |  |
| 序      | 내는 내내 구도 13            | 第二类        | TR-1-1-1   | TR-2-1-1   | TR-3-1-1 | TR-4-1-1 | TR-5-1-1 | TR-6-1-1 | TR-7-1-1    |  |  |  |  |
| 序<br>号 | 监测项目                   | 用地筛        | 草地、砂       | 草地、砂       | 草地、砂     | 草地、砂     | 草地、砂     | 草地、砂     |             |  |  |  |  |
|        |                        | 选值         | 壤土、褐       | 壤土、褐       | 壤土、褐     | 壤土、褐     | 壤土、褐     | 壤土、褐     | 草地、砂壤       |  |  |  |  |
|        |                        |            | 色          | 色          | 色        | 色        | 色        | 色        | 土、褐色        |  |  |  |  |
| 1      | 砷,mg/kg                | 60         | 0.912      | 0.916      | 0.802    | 0.824    | 0.797    | 0.790    | 1.36        |  |  |  |  |
| 2      | 镉, mg/kg               | 65         | 0.56       | 0.56       | 0.57     | 0.58     | 0.60     | 0.62     | 0.44        |  |  |  |  |
| 3      | 六价铬, mg/kg             | 5.7        | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 4      | 铜,mg/kg                | 18000      | 28         | 36         | 34       | 34       | 35       | 38       | 42          |  |  |  |  |
| 5      | 铅, mg/kg               | 800        | 14.6       | 13.4       | 15.3     | 349.7    | 16.8     | 12.1     | 14.2        |  |  |  |  |
| 6      | 汞, mg/kg               | 38         | 0.321      | 0.236      | 0.0665   | 0.107    | 0.126    | 0.114    | 0.107       |  |  |  |  |
| 7      | 镍,mg/kg                | 900        | 36         | 38         | 45       | 41       | 46       | 37       | 52          |  |  |  |  |
| 8      | 四氯化碳, μg/kg            | 2800       | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 9      | 氯仿,μg/kg               | 900        | 3.9        | 6.1        | ND       | ND       | 4.0      | ND       | 6.2         |  |  |  |  |
| 10     | 氯甲烷, μg/kg             | 37000      | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 11     | 1,1-二氯乙烷 <b>,μg/kg</b> | 9000       | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 12     | 1,2-二氯乙烷, μg/kg        | 5000       | ND         | 3.6        | ND       | ND       | ND       | ND       | 3.9         |  |  |  |  |
| 13     | 1,1-二氯乙烯, μg/kg        | 66000      | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 14     | 顺式-1,2-二氯乙烯, μg/kg     | 596000     | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 15     | 反式-1,2-二氯乙烯, μg/kg     | 54000      | ND         | 8.6        | ND       | ND       | ND       | ND       | 9.1         |  |  |  |  |
| 16     | 二氯甲烷,μg/kg             | 616000     | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 17     | 1,2-二氯丙烷, μg/kg        | 5000       | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 18     | 1,1,1,2-四氯乙烷, μg/kg    | 10000      | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 19     | 1,1,2,2-四氯乙烷, μg/kg    | 6800       | ND         | ND         | ND       | ND       | ND       | ND       | ND          |  |  |  |  |
| 20     | 四氯乙烯,μg/kg             | 53000      | ND         | 13.1       | ND       | ND       | 12.6     | ND       | 14.8        |  |  |  |  |

| 1,1,1-三氯乙烷, μg/kg    | 840000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
|----------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| 1,1,2-三氯乙烷, μg/kg    | 2800                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 三氯乙烯,μg/kg           | 2800                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 1,2,3-三氯丙烷, μg/kg    | 500                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 氯乙烯,μg/kg            | 430                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 苯,µg/kg              | 4000                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 氯苯,μg/kg             | 270000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 5.6                                                           |
| 1,2-二氯苯, μg/kg       | 560000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 1,4-二氯苯, μg/kg       | 20000                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 乙苯,μg/kg             | 28000                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 8.5                                                           |
| 苯乙烯,μg/kg            | 1290000                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 4.4                                                           |
| 甲苯, μg/kg            | 1200000                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                              | 9.9                                                           |
| 间-二甲苯,μg/kg          | 570000                                                                                            | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                              | 17.9                                                          |
| 对-二甲苯,μg/kg          | 570000                                                                                            | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                              | 17.9                                                          |
| 邻-二甲苯,μg/kg          | 640000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 5.4                                                           |
| 硝基苯, mg/kg           | 76                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 苯胺, mg/kg            | 260                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 2-氯酚, mg/kg          | 2256                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 苯并(a)蒽, mg/kg        | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 0.1                                                           |
| 苯并(a)芘, mg/kg        | 1.5                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 苯并(b)荧蒽, mg/kg       | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 0.2                                                           |
| 苯并(k)荧蒽, mg/kg       | 151                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
| 莡, mg/kg             | 1293                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 0.2                                                           |
| 二苯并(ah)蒽,mg/kg       | 1.5                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 0.2                                                           |
| 茚并(1,2,3-cd)芘, mg/kg | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | 0.2                                                           |
| 萘, mg/kg             | 70                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                              | ND                                                            |
|                      | 1,1,2-三氯乙烷, μg/kg 三氯乙烯, μg/kg 1,2,3-三氯丙烷, μg/kg 氯苯, μg/kg 森苯, μg/kg 1,2-二氯苯, μg/kg 1,4-二氯苯, μg/kg | 1,1,2-三氯乙烷, μg/kg       2800         三氯乙烯, μg/kg       2800         1,2,3-三氯丙烷, μg/kg       500         氯乙烯, μg/kg       430         苯, μg/kg       4000         氯苯, μg/kg       270000         1,2-二氯苯, μg/kg       560000         1,4-二氯苯, μg/kg       28000         苯乙烯, μg/kg       1290000         甲苯, μg/kg       1200000         耐-二甲苯, μg/kg       570000         对-二甲苯, μg/kg       570000         对-二甲苯, μg/kg       640000         硝基苯, mg/kg       260         2-氯酚, mg/kg       15         苯并(a) 茂, mg/kg       15         苯并(b) 荧蒽, mg/kg       15         苯并(b) 荧蒽, mg/kg       15         二苯并(ah) 蒽, mg/kg       15         市并(1,2,3-cd) 芘, mg/kg       1.5 | 1,1,2-三氯乙烷,μg/kg 2800 ND 三氯乙烯,μg/kg 2800 ND 1,2,3-三氯丙烷,μg/kg 500 ND 氯乙烯,μg/kg 430 ND 蒸木,μg/kg 4000 ND 氯苯,μg/kg 270000 ND 1,2-二氯苯,μg/kg 560000 ND 1,4-二氯苯,μg/kg 20000 ND 1,4-二氯苯,μg/kg 1290000 ND 苯乙烯,μg/kg 1290000 ND 平苯,μg/kg 1290000 ND 中苯,μg/kg 1200000 ND 阿-二甲苯,μg/kg 570000 15.6 对-二甲苯,μg/kg 570000 15.6 对-二甲苯,μg/kg 570000 ND  磁基苯,mg/kg 76 ND 苯胺,mg/kg 76 ND 苯并(a)蒽,mg/kg 15 ND 苯并(a)克,mg/kg 15 ND 苯并(b)荧蒽,mg/kg 151 ND 基,mg/kg 1293 ND 二苯并(a)总,mg/kg 15 ND | 1,1,2-三氯乙烷, μg/kg       2800       ND       ND         三氯乙烯, μg/kg       2800       ND       ND         1,2,3-三氯丙烷, μg/kg       500       ND       ND         氯乙烯, μg/kg       430       ND       ND         苯, μg/kg       4000       ND       ND         基本, μg/kg       270000       ND       ND         1,2-二氯苯, μg/kg       560000       ND       ND         1,4-二氯苯, μg/kg       28000       ND       ND         基本, μg/kg       1290000       ND       ND         基本, μg/kg       1290000       ND       ND         阿-二甲苯, μg/kg       570000       15.6       16.3         对-二甲苯, μg/kg       570000       15.6       16.3         郊-二甲苯, μg/kg       640000       ND       ND         磁基苯, mg/kg       76       ND       ND         本胺, mg/kg       260       ND       ND         基并(a)蒽, mg/kg       15       ND       ND         苯并(a)蒽, mg/kg       15       ND       ND         苯并(b)荧蒽, mg/kg       15       ND       ND         苯并(b)荧蒽, mg/kg       151       ND       ND         二苯并(ah)蒽, mg/kg       1.5 | 1,1,2-三氟乙烷, μg/kg   2800 ND | 1,1,2-三氯乙烷, μg/kg       2800       ND       ND <t< td=""><td>  1,1,2-三氣乙烷, μg/kg   2800 ND ND</td><td>1,1,2-三氯乙烷, μg/kg 2800 ND ND</td></t<> | 1,1,2-三氣乙烷, μg/kg   2800 ND | 1,1,2-三氯乙烷, μg/kg 2800 ND |

| 47 | 锑, mg/kg                | 180  | 0.42                 | 0.57                 | 0.20                 | 6.05                 | 0.32                 | 1.40                 | 1.98                 |
|----|-------------------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 48 | 铍, mg/kg                | 29   | 1.30                 | 1.98                 | 1.85                 | 1.49                 | 1.61                 | 1.73                 | 2.16                 |
| 49 | 钴, mg/kg                | 70   | 15.0                 | 16.3                 | 12.8                 | 11.5                 | 13.4                 | 25.9                 | 24.5                 |
| 50 | 邻苯二甲酸二(2-二乙基己基)酯, mg/kg | 121  | 0.1                  | ND                   | ND                   | 0.1                  | 0.2                  | 0.1                  | 0.2                  |
| 51 | 邻苯二甲酸丁基苄基酯, mg/kg       | 900  | ND                   |
| 52 | 邻苯二甲酸二正辛酯, mg/kg        | 2812 | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | 0.1                  |
| 53 | 石油烃(C10-C40), mg/kg     | 4500 | 9                    | 16                   | 8                    | 26                   | ND                   | 29                   | 8                    |
| 54 | pH 值,无量纲                |      | 7.74                 | 7.77                 | 7.72                 | 7.74                 | 7.76                 | 7.56                 | 7.47                 |
| 55 | 锌, mg/kg                |      | 78                   | 84                   | 78                   | 87                   | 55                   | 110                  | 86                   |
| 56 | 邻苯二甲酸二甲酯, mg/kg         |      | ND                   |
| 57 | 邻苯二甲酸二乙酯, mg/kg         |      | ND                   |
| 58 | 邻苯二甲酸二丁酯, mg/kg         |      | ND                   |
| 59 | 锰, mg/kg                |      | 289                  | 226                  | 281                  | 289                  | 358                  | 191                  | 216                  |
| 60 | 丙酮,mg/kg                |      | $1.8 \times 10^{-3}$ | $1.5 \times 10^{-3}$ | $1.6 \times 10^{-3}$ | $1.6 \times 10^{-3}$ | $2.6 \times 10^{-3}$ | $2.0 \times 10^{-3}$ | $2.0 \times 10^{-3}$ |

续表 4-2 土壤监测数据统计表

|        | 类农 4-2 工            |        |           |             |               |             |             |             |               |  |  |  |
|--------|---------------------|--------|-----------|-------------|---------------|-------------|-------------|-------------|---------------|--|--|--|
|        |                     |        | 苯酐生产      | 苯酐生产        | 苯酐生产<br># 署 以 | 增塑剂生        | 增塑剂生        | 聚酯车间<br>区域  | 环氧树脂<br>区域    |  |  |  |
| احد    |                     | 第二类    | 装置区       | 装置区         | 装置区           | 产装置区        | 产装置区        |             |               |  |  |  |
| 序<br>号 | 监测项目                | 用地筛    | TR-8-1-1  | TR-9-1-1    | TR-10-1-1     | TR-11-1-1   | TR-12-1-1   | TR-13-1-1   | TR-14-1-1     |  |  |  |
| 号      | <b>並</b> が入口        | 选值     | 草地、砂壤土、褐色 | 草地、砂 壤土、褐 色 | 草地、砂壤<br>土、褐色 | 草地、砂 壤土、褐 色 | 草地、砂 壤土、褐 色 | 草地、砂 壤土、褐 色 | 草地、砂壤<br>土、褐色 |  |  |  |
| 1      | 砷, mg/kg            | 60     | 0.699     | 0.671       | 0.966         | 0.868       | 0.940       | 0.779       | 0.697         |  |  |  |
| 2      | 镉,mg/kg             | 65     | 0.56      | 0.46        | 0.60          | 0.58        | 0.59        | 0.51        | 0.53          |  |  |  |
| 3      | 六价铬, mg/kg          | 5.7    | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 4      | 铜, mg/kg            | 18000  | 44        | 39          | 85            | 44          | 52          | 44          | 45            |  |  |  |
| 5      | 铅, mg/kg            | 800    | 14.7      | 12.4        | 18.4          | 13.2        | 32.3        | 14.4        | 15.9          |  |  |  |
| 6      | 汞,mg/kg             | 38     | 0.0838    | 0.272       | 0.224         | 0.0797      | 0.265       | 0.146       | 0.0343        |  |  |  |
| 7      | 镍, mg/kg            | 900    | 44        | 45          | 35            | 34          | 49          | 47          | 39            |  |  |  |
| 8      | 四氯化碳, μg/kg         | 2800   | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 9      | 氯仿, μg/kg           | 900    | ND        | 5.3         | 8.0           | ND          | 4.9         | 5.3         | 4.9           |  |  |  |
| _10    | 氯甲烷,μg/kg           | 37000  | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 11     | 1,1-二氯乙烷, μg/kg     | 9000   | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| _12    | 1,2-二氯乙烷, μg/kg     | 5000   | ND        | 3.7         | 3.8           | ND          | 3.7         | 3.7         | 3.6           |  |  |  |
| _13    | 1,1-二氯乙烯, μg/kg     | 66000  | 8.8       | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| _14    | 顺式-1,2-二氯乙烯, μg/kg  | 596000 | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 15     | 反式-1,2-二氯乙烯, μg/kg  | 54000  | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| _16    | 二氯甲烷,μg/kg          | 616000 | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| _17    | 1,2-二氯丙烷, μg/kg     | 5000   | ND        | ND          | ND            |             |             |             |               |  |  |  |
| 18     | 1,1,1,2-四氯乙烷, μg/kg | 10000  | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 19     | 1,1,2,2-四氯乙烷, μg/kg | 6800   | ND        | ND          | ND            | ND          | ND          | ND          | ND            |  |  |  |
| 20     | 四氯乙烯, μg/kg         | 53000  | ND        | 13.4        | 14.0          | ND          | 13.8        | ND          | 13.1          |  |  |  |

| 1,1,1-三氯乙烷, μg/kg    | 840000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,1,2-三氯乙烷, μg/kg    | 2800                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 三氯乙烯,μg/kg           | 2800                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1,2,3-三氯丙烷, μg/kg    | 500                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 氯乙烯,μg/kg            | 430                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯,μg/kg              | 4000                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.9                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 氯苯,μg/kg             | 270000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.2                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2-二氯苯, μg/kg       | 560000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,4-二氯苯,μg/kg        | 20000                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 乙苯, μg/kg            | 28000                                                                                             | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.9                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 苯乙烯, μg/kg           | 1290000                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 甲苯, μg/kg            | 1200000                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.2                                                             | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 间-二甲苯,μg/kg          | 570000                                                                                            | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.2                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.6                                                            | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 对-二甲苯,μg/kg          | 570000                                                                                            | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.2                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.6                                                            | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 邻-二甲苯,μg/kg          | 640000                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                             | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 硝基苯, mg/kg           | 76                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯胺, mg/kg            | 260                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2-氯酚, mg/kg          | 2256                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯并(a)蒽, mg/kg        | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯并(a)芘, mg/kg        | 1.5                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯并(b)荧蒽, mg/kg       | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 苯并(k)荧蒽, mg/kg       | 151                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 蔗,mg/kg              | 1293                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 二苯并(ah)蒽,mg/kg       | 1.5                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 茚并(1,2,3-cd)芘, mg/kg | 15                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 萘, mg/kg             | 70                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | 1,1,2-三氯乙烷, μg/kg 三氯乙烯, μg/kg 1,2,3-三氯丙烷, μg/kg 氯苯, μg/kg 氯苯, μg/kg 1,2-二氯苯, μg/kg 1,4-二氯苯, μg/kg | 1,1,2-三氯乙烷, μg/kg       2800         三氯乙烯, μg/kg       2800         1,2,3-三氯丙烷, μg/kg       500         氯乙烯, μg/kg       430         苯, μg/kg       4000         氯苯, μg/kg       270000         1,2-二氯苯, μg/kg       20000         乙苯, μg/kg       28000         苯乙烯, μg/kg       1290000         甲苯, μg/kg       570000         对-二甲苯, μg/kg       570000         郊-二甲苯, μg/kg       640000         硝基苯, mg/kg       260         2-氯酚, mg/kg       15         苯并(a) 蒽, mg/kg       15         苯并(a) 克, mg/kg       15         苯并(b) 荧蒽, mg/kg       15         苯并(b) 荧蒽, mg/kg       15         二苯并(ah) 蒽, mg/kg       1.5         茚并(1,2,3-cd) 芘, mg/kg       1.5         茚并(1,2,3-cd) 芘, mg/kg       15 | 1,1,2-三氯乙烷, μg/kg       2800       ND         三氯乙烯, μg/kg       2800       ND         1,2,3-三氯丙烷, μg/kg       500       ND         氯乙烯, μg/kg       430       ND         苯, μg/kg       4000       ND         氯苯, μg/kg       270000       ND         1,2-二氯苯, μg/kg       560000       ND         1,4-二氯苯, μg/kg       28000       8.1         苯乙烯, μg/kg       1290000       ND         甲苯, μg/kg       570000       ND         前-二甲苯, μg/kg       570000       16.9         对-二甲苯, μg/kg       570000       16.9         邻-二甲苯, μg/kg       640000       ND         硝基苯, mg/kg       260       ND         苯胺, mg/kg       260       ND         苯并(a)蔥, mg/kg       15       ND         苯并(a)乾, mg/kg       15       ND         苯并(b)荧蒽, mg/kg       15       ND         苯并(h)葱, mg/kg       151       ND         市并(1,2,3-cd)芘, mg/kg       1.5       ND | 1,1,2-三氯乙烷, μg/kg 2800 ND ND ND 三氯乙烯, μg/kg 2800 ND | 1,1,2-三氣乙烷, μg/kg     2800     ND     ND     ND       三氟乙烯, μg/kg     2800     ND     ND     ND       1,2,3-三氯丙烷, μg/kg     500     ND     ND     ND       氟乙烯, μg/kg     430     ND     ND     ND       苯, μg/kg     4000     ND     ND     ND       素末, μg/kg     270000     ND     ND     ND       1,2-二氯苯, μg/kg     560000     ND     ND     ND       1,4-二氯苯, μg/kg     28000     8.1     7.9     8.1       苯乙烯, μg/kg     1290000     ND     ND     ND       基本, μg/kg     1290000     ND     ND     A.2       甲苯, μg/kg     1200000     ND     ND     A.2       甲苯, μg/kg     570000     16.9     16.7     17.2       对-二甲苯, μg/kg     570000     16.9     16.7     17.2       邻-二甲苯, μg/kg     640000     ND     5.1     5.2       硝基苯, mg/kg     76     ND     ND     ND       基度, mg/kg     15     ND     ND     ND       基升(a)营, mg/kg     15     ND     ND     ND       苯并(a)营, mg/kg     15     ND     ND     ND       二二甲苯(b)炭壳, mg/kg     15     ND     ND     ND </td <td>  1,1,2-三氣乙烷, μg/kg   2800 ND ND</td> <td>1,1,2-三氯乙烷, μg/kg         2800         ND         ND<!--</td--><td>1,1,2-三氣乙烷, μg/kg         2800         ND         ND<!--</td--></td></td> | 1,1,2-三氣乙烷, μg/kg   2800 ND | 1,1,2-三氯乙烷, μg/kg         2800         ND         ND </td <td>1,1,2-三氣乙烷, μg/kg         2800         ND         ND<!--</td--></td> | 1,1,2-三氣乙烷, μg/kg         2800         ND         ND </td |

| 47 | 锑, mg/kg                | 180  | 0.30 | 0.19                 | 0.51 | ND                   | 2.33 | 0.27                 | ND                   |
|----|-------------------------|------|------|----------------------|------|----------------------|------|----------------------|----------------------|
| 48 | 铍, mg/kg                | 29   | 1.21 | 1.20                 | 1.38 | 2.06                 | 1.75 | 1.23                 | 1.42                 |
| 49 | 钴, mg/kg                | 70   | 6.79 | 10.6                 | 14.1 | 7.09                 | 19.7 | 9.91                 | 11.2                 |
| 50 | 邻苯二甲酸二(2-二乙基己基)酯, mg/kg | 121  | 0.1  | 0.1                  | 0.6  | 0.2                  | 0.6  | ND                   | 0.1                  |
| 51 | 邻苯二甲酸丁基苄基酯, mg/kg       | 900  | ND   | ND                   | ND   | ND                   | 0.4  | ND                   | ND                   |
| 52 | 邻苯二甲酸二正辛酯, mg/kg        | 2812 | ND   | ND                   | ND   | ND                   | 0.3  | ND                   | ND                   |
| 53 | 石油烃(C10-C40), mg/kg     | 4500 | 16   | ND                   | 22   | ND                   | 12   | 9                    | 10                   |
| 54 | pH 值,无量纲                |      | 6.87 | 7.22                 | 7.18 | 7.09                 | 7.40 | 7.33                 | 6.94                 |
| 55 | 锌, mg/kg                |      | 100  | 81                   | 66   | 100                  | 58   | 89                   | 74                   |
| 56 | 邻苯二甲酸二甲酯, mg/kg         |      | ND   | ND                   | ND   | ND                   | ND   | ND                   | ND                   |
| 57 | 邻苯二甲酸二乙酯, mg/kg         |      | ND   | ND                   | ND   | ND                   | ND   | ND                   | ND                   |
| 58 | 邻苯二甲酸二丁酯, mg/kg         |      | ND   | ND                   | ND   | ND                   | ND   | ND                   | ND                   |
| 59 | 锰, mg/kg                |      | 190  | 317                  | 245  | 306                  | 486  | 270                  | 386                  |
| 60 | 丙酮, mg/kg               |      | ND   | $1.7 \times 10^{-3}$ | ND   | $2.0 \times 10^{-3}$ | ND   | $2.1 \times 10^{-3}$ | $1.8 \times 10^{-3}$ |
|    |                         |      |      |                      | •    | -                    |      |                      |                      |

续表 4-2 土壤监测数据统计表

|     | 要表 4-2 土壤监测数据统计表    |              |            |           |           |           |           |           |           |  |  |  |
|-----|---------------------|--------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|     |                     | <b>丛</b> 一 坐 | 环氧树脂<br>区域 | 公用区1      | 公用区2      | 危废库       | 罐区3       | 稳定剂装<br>置 | 仓库1       |  |  |  |
| 序   | <b>化测在日</b>         | 第二类          | TR-15-1-1  | TR-16-1-1 | TR-17-1-1 | TR-18-1-1 | TR-19-1-1 | TR-20-1-1 | TR-21-1-1 |  |  |  |
| 序 号 | 监测项目                | 用地筛 选值       | 草地、砂壤土、褐色  | 草地、砂 壤土、褐 | 草地、砂壤土、褐色 | 草地、砂 壤土、褐 | 草地、砂壤土、褐色 | 草地、砂 壤土、褐 | 草地、砂壤土、褐色 |  |  |  |
| 1   | 砷, mg/kg            | 60           | 0.701      | 0.689     | 0.614     | 0.628     | 0.528     | 0.695     | 0.750     |  |  |  |
| 2   | 镉, mg/kg            | 65           | 0.53       | 0.56      | 0.57      | 0.64      | 0.49      | 0.58      | 0.60      |  |  |  |
| 3   | 六价铬, mg/kg          | 5.7          | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 4   | 铜, mg/kg            | 18000        | 48         | 44        | 25        | 20        | 31        | 23        | 22        |  |  |  |
| 5   | 铅, mg/kg            | 800          | 12.1       | 19.4      | 12.9      | 11.9      | 17.2      | 13.7      | 12.9      |  |  |  |
| 6   | 汞, mg/kg            | 38           | 0.0989     | 0.158     | 0.0382    | 0.0712    | ND        | 0.128     | 0.121     |  |  |  |
| 7   | 镍, mg/kg            | 900          | 41         | 40        | 32        | 40        | 32        | 41        | 35        |  |  |  |
| 8   | 四氯化碳,μg/kg          | 2800         | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 9   | 氯仿,μg/kg            | 900          | 4.6        | 4.5       | 6.1       | 4.2       | 4.9       | 5.4       | 7.2       |  |  |  |
| 10  | 氯甲烷,μg/kg           | 37000        | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 11  | 1,1-二氯乙烷, μg/kg     | 9000         | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 12  | 1,2-二氯乙烷, μg/kg     | 5000         | ND         | 3.7       | 4.0       | ND        | 3.7       | 3.8       | 3.7       |  |  |  |
| 13  | 1,1-二氯乙烯, μg/kg     | 66000        | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 14  | 顺式-1,2-二氯乙烯, μg/kg  | 596000       | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 15  | 反式-1,2-二氯乙烯, μg/kg  | 54000        | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 16  | 二氯甲烷,μg/kg          | 616000       | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 17  | 1,2-二氯丙烷, μg/kg     | 5000         | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 18  | 1,1,1,2-四氯乙烷, μg/kg | 10000        | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 19  | 1,1,2,2-四氯乙烷, μg/kg | 6800         | ND         | ND        | ND        | ND        | ND        | ND        | ND        |  |  |  |
| 20  | 四氯乙烯,μg/kg          | 53000        | 13.5       | 13.2      | 14.5      | ND        | 13.4      | 14.2      | 13.9      |  |  |  |

| 21       1,1,1-三氣乙烷, μg/kg       840000       ND                                                                                                       | ND N |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 23         三氯乙烯, μg/kg         2800         ND         ND | ND   |
| 24     1,2,3-三氟丙烷, μg/kg     500     ND     ND     ND     ND     ND       25     氟乙烯, μg/kg     430     ND     ND     ND     ND     ND     ND       26     苯, μg/kg     4000     ND     ND     ND     ND     ND     ND       27     氯苯, μg/kg     270000     5.3     ND     5.6     ND     ND     ND     ND       28     1,2-二氯苯, μg/kg     560000     ND     ND     ND     ND     ND     ND       29     1,4-二氯苯, μg/kg     20000     ND     ND     ND     ND     ND     ND       30     乙苯, μg/kg     28000     ND     ND     ND     ND     ND       31     苯乙烯, μg/kg     1290000     ND     ND     ND     ND     ND       32     甲苯, μg/kg     1200000     9.3     9.2     10.0     ND     9.4     9.6       33     间-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3       34     对-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3                                                                                                                                                                                                                                                              | ND         |
| 25   無乙烯, μg/kg   430 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND ND ND ND ND ND ND ND ND               |
| 26   苯,μg/kg   4000   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND ND ND ND ND ND ND                     |
| 27       氯苯, μg/kg       270000       5.3       ND       5.6       ND       ND       5.4         28       1,2-二氯苯, μg/kg       560000       ND       16.8       17.3       ND                                                                                 | ND ND ND ND ND                           |
| 28   1,2-二氯苯,μg/kg   560000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND<br>ND                     |
| 29     1,4-二氯苯, μg/kg     20000     ND     ND     ND     ND     ND     ND       30     乙苯, μg/kg     28000     ND     ND     ND     ND     ND     ND     ND       31     苯乙烯, μg/kg     1290000     ND     ND     ND     ND     ND     ND       32     甲苯, μg/kg     1200000     9.3     9.2     10.0     ND     9.4     9.6       33     间-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3       34     对-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND                           |
| 30   乙苯, μg/kg   28000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                 |
| 31   苯乙烯, μg/kg   1290000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                       |
| 32     甲苯, μg/kg     1200000     9.3     9.2     10.0     ND     9.4     9.6       33     间-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3       34     对-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| 33     间-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3       34     对-二甲苯, μg/kg     570000     16.7     16.6     17.8     ND     16.8     17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93                                       |
| 34 对-二甲苯,μg/kg 570000 16.7 16.6 17.8 ND 16.8 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.7                                     |
| tu 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.7                                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1                                      |
| 36 硝基苯, mg/kg 76 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| 37苯胺, mg/kg260NDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                       |
| 38 2-氯酚, mg/kg 2256 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                       |
| 39 苯并(a)蒽,mg/kg 15 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                       |
| 40 苯并(a)芘, mg/kg 1.5 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                       |
| 41 苯并(b)荧蒽, mg/kg 15 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                       |
| 42 苯并(k)荧蒽, mg/kg 151 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                       |
| 43     萬, mg/kg     1293     ND     ND     ND     ND     ND     ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                       |
| 44 二苯并(ah)蒽,mg/kg 1.5 ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                       |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                       |
| 46       萘, mg/kg       70       ND                                                                                                           | ND                                       |

| 47 | 锑, mg/kg                | 180  | ND                   | 0.19                 | ND                   | ND                   | 0.60                 | ND                   | ND   |
|----|-------------------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------|
| 48 | 铍, mg/kg                | 29   | 1.01                 | 0.90                 | 1.79                 | 1.59                 | 1.60                 | 1.31                 | 1.32 |
| 49 | 钴, mg/kg                | 70   | 9.91                 | 11.2                 | 11.1                 | 8.43                 | 8.93                 | 4.38                 | 9.57 |
| 50 | 邻苯二甲酸二(2-二乙基己基)酯, mg/kg | 121  | ND                   | ND                   | ND                   | ND                   | 0.8                  | 0.2                  | 0.6  |
| 51 | 邻苯二甲酸丁基苄基酯, mg/kg       | 900  | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 52 | 邻苯二甲酸二正辛酯, mg/kg        | 2812 | ND                   | ND                   | ND                   | ND                   | 1.3                  | ND                   | ND   |
| 53 | 石油烃(C10-C40), mg/kg     | 4500 | 15                   | 10                   | ND                   | 32                   | 24                   | 24                   | 31   |
| 54 | pH 值,无量纲                |      | 7.46                 | 7.74                 | 7.63                 | 7.42                 | 7.38                 | 7.57                 | 7.49 |
| 55 | 锌, mg/kg                |      | 75                   | 59                   | 82                   | 81                   | 101                  | 87                   | 74   |
| 56 | 邻苯二甲酸二甲酯, mg/kg         |      | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 57 | 邻苯二甲酸二乙酯, mg/kg         |      | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 58 | 邻苯二甲酸二丁酯, mg/kg         |      | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 59 | 锰, mg/kg                |      | 270                  | 386                  | 313                  | 274                  | 291                  | 225                  | 351  |
| 60 | 丙酮, mg/kg               |      | $2.1 \times 10^{-3}$ | $1.8 \times 10^{-3}$ | $1.5 \times 10^{-3}$ | $2.2 \times 10^{-3}$ | $1.9 \times 10^{-3}$ | $1.4 \times 10^{-3}$ | ND   |
|    |                         |      |                      |                      |                      |                      |                      |                      |      |

续表 4-2 土壤监测数据统计表

|     |                     |        | 仓库1       | 仓库1               | 仓库1       | 仓库 2              | 停车场       | 停车场       | 办公区       |  |
|-----|---------------------|--------|-----------|-------------------|-----------|-------------------|-----------|-----------|-----------|--|
| 它   |                     | 第二类    | TR-22-1-1 | TR-23-1-1         | TR-24-1-1 | TR-25-1-1         | TR-26-1-1 | TR-27-1-1 | TR-28-1-1 |  |
| 序号  | 监测项目                | 用地筛 选值 | 草地、砂壤土、褐色 | 草地、砂<br>壤土、褐<br>色 | 草地、砂壤土、褐色 | 草地、砂<br>壤土、褐<br>色 | 草地、砂壤土、褐色 | 草地、砂壤土、褐色 | 草地、砂壤土、褐色 |  |
| 1   | 砷,mg/kg             | 60     | 0.778     | 0.792             | 0.839     | 0.793             | 0.829     | 0.735     | 0.849     |  |
| 2   | 镉, mg/kg            | 65     | 0.50      | 0.58              | 0.53      | 0.50              | 0.58      | 0.56      | 0.60      |  |
| 3   | 六价铬, mg/kg          | 5.7    | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 4   | 铜, mg/kg            | 18000  | 25        | 25                | 24        | 24                | 27        | 21        | 27        |  |
| 5   | 铅, mg/kg            | 800    | 12.9      | 16.0              | 17.8      | 14.9              | 15.6      | 13.4      | 18.0      |  |
| 6   | 汞, mg/kg            | 38     | 0.0347    | 0.0291            | 0.0862    | 0.100             | 0.0329    | ND        | 0.617     |  |
| 7   | 镍, mg/kg            | 900    | 38        | 40                | 43        | 35                | 42        | 38        | 40        |  |
| 8   | 四氯化碳, μg/kg         | 2800   | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 9   | 氯仿, μg/kg           | 900    | 4.1       | 4.0               | 6.1       | 7.2               | 5.5       | 5.8       | ND        |  |
| _10 | 氯甲烷,μg/kg           | 37000  | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 11  | 1,1-二氯乙烷, μg/kg     | 9000   | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 12  | 1,2-二氯乙烷, μg/kg     | 5000   | ND        | ND                | ND        | 3.7               | ND        | 3.9       | ND        |  |
| 13  | 1,1-二氯乙烯, μg/kg     | 66000  | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| _14 | 顺式-1,2-二氯乙烯, μg/kg  | 596000 | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 15  | 反式-1,2-二氯乙烯, μg/kg  | 54000  | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 16  | 二氯甲烷,μg/kg          | 616000 | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| _17 | 1,2-二氯丙烷, μg/kg     | 5000   | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 18  | 1,1,1,2-四氯乙烷, μg/kg | 10000  | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 19  | 1,1,2,2-四氯乙烷, μg/kg | 6800   | ND        | ND                | ND        | ND                | ND        | ND        | ND        |  |
| 20  | 四氯乙烯, μg/kg         | 53000  | ND        | ND                | 13.2      | 13.9              | 13.5      | 14.3      | ND        |  |

| 21 | 1,1,1-三氯乙烷, μg/kg    | 840000  | ND | ND | ND   | ND   | ND   | ND   | ND    |
|----|----------------------|---------|----|----|------|------|------|------|-------|
| 22 | 1,1,2-三氯乙烷, μg/kg    | 2800    | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 23 | 三氯乙烯, μg/kg          | 2800    | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 24 | 1,2,3-三氯丙烷, μg/kg    | 500     | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 25 | 氯乙烯,μg/kg            | 430     | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 26 | 苯,μg/kg              | 4000    | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 27 | 氯苯,μg/kg             | 270000  | ND | ND | ND   | ND   | ND   | 5.5  | ND    |
| 28 | 1,2-二氯苯, μg/kg       | 560000  | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 29 | 1,4-二氯苯, μg/kg       | 20000   | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 30 | 乙苯, μg/kg            | 28000   | ND | ND | ND   | ND   | ND   | 8.4  | ND    |
| 31 | 苯乙烯, μg/kg           | 1290000 | ND | ND | ND   | ND   | ND   | 4.3  | ND    |
| 32 | 甲苯,μg/kg             | 1200000 | ND | ND | 9.3  | 9.3  | 9.5  | 9.7  | ND    |
| 33 | 间-二甲苯,μg/kg          | 570000  | ND | ND | 16.8 | 16.7 | 17.0 | 17.4 | ND    |
| 34 | 对-二甲苯,μg/kg          | 570000  | ND | ND | 16.8 | 16.7 | 17.0 | 17.4 | ND    |
| 35 | 邻-二甲苯,μg/kg          | 640000  | ND | ND | ND   | 5.1  | ND   | 5.3  | ND    |
| 36 | 硝基苯, mg/kg           | 76      | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 37 | 苯胺, mg/kg            | 260     | ND | ND | ND   | ND   | ND   | ND   | 0.159 |
| 38 | 2-氯酚, mg/kg          | 2256    | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 39 | 苯并(a)蒽, mg/kg        | 15      | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 40 | 苯并(a)芘,mg/kg         | 1.5     | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 41 | 苯并(b)荧蒽,mg/kg        | 15      | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 42 | 苯并(k)荧蒽,mg/kg        | 151     | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 43 | <b></b>              | 1293    | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 44 | 二苯并(ah)蒽, mg/kg      | 1.5     | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 45 | 茚并(1,2,3-cd)芘, mg/kg | 15      | ND | ND | ND   | ND   | ND   | ND   | ND    |
| 46 | 萘, mg/kg             | 70      | ND | ND | ND   | ND   | ND   | ND   | ND    |

| 47 | 锑, mg/kg                | 180                                   | ND                   | 0.11                 | 0.30                 | ND                   | ND                   | 0.15                 | 0.16 |
|----|-------------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------|
| 48 | 铍, mg/kg                | 29                                    | 1.56                 | 1.98                 | 1.41                 | 1.32                 | 1.82                 | 2.04                 | 1.72 |
| 49 | 钴, mg/kg                | 70                                    | 11.6                 | 11.4                 | 14.4                 | 9.29                 | 12.1                 | 13.8                 | 11.8 |
| 50 | 邻苯二甲酸二(2-二乙基己基)酯, mg/kg | 121                                   | ND                   | 0.1                  | 0.3                  | 0.6                  | 0.2                  | 0.4                  | 0.2  |
| 51 | 邻苯二甲酸丁基苄基酯, mg/kg       | 900                                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 52 | 邻苯二甲酸二正辛酯, mg/kg        | 2812                                  | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 53 | 石油烃(C10-C40), mg/kg     | 4500                                  | 22                   | 15                   | 13                   | 31                   | 9                    | 19                   | 29   |
| 54 | pH 值,无量纲                |                                       | 7.58                 | 7.65                 | 7.42                 | 7.51                 | 7.24                 | 7.50                 | 7.55 |
| 55 | 锌, mg/kg                |                                       | 90                   | 76                   | 87                   | 74                   | 89                   | 79                   | 98   |
| 56 | 邻苯二甲酸二甲酯, mg/kg         |                                       | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 57 | 邻苯二甲酸二乙酯, mg/kg         |                                       | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 58 | 邻苯二甲酸二丁酯, mg/kg         |                                       | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND   |
| 59 | 锰, mg/kg                |                                       | 458                  | 458                  | 662                  | 686                  | 394                  | 593                  | 445  |
| 60 | 丙酮, mg/kg               |                                       | $2.3 \times 10^{-3}$ | $2.3 \times 10^{-3}$ | $1.4 \times 10^{-3}$ | $2.9 \times 10^{-3}$ | $1.8 \times 10^{-3}$ | $1.6 \times 10^{-3}$ | ND   |
|    | _                       | · · · · · · · · · · · · · · · · · · · | •                    | ·                    |                      | ·                    |                      |                      | ·    |

### 4.2 土壤检测结果分析

本次污染状况的评价标准优先采用《建设用地土壤污染风险管控标准》 (GB36600-2018)中第二类用地筛选值。

根据表 4-2 可知,本项目各土壤点位监测因子含量均未超出《建设用地土壤污染风险管控标准》(GB/T36600-2018)中第二类用地筛选值。

## 4.3 地下水检测结果分析

本次污染状况的评价标准优先采用《地下水环境质量标准》(GB/T14848-2017)中IV类水质要求。

| 检测点位                | 北厂区储<br>罐区1#        | 北厂区储<br>罐区 2#       | 罐区1 3#            | 罐区2 4#              | IV类评价<br>标准 |
|---------------------|---------------------|---------------------|-------------------|---------------------|-------------|
| 检测项目                | 检测结果                | 检测结果                | 检测结果              | 检测结果                | _           |
| 总硬度, mg/L           | 868.0               | 870.0               | 886.8             | 951.1               | ≤650        |
| 铁, mg/L             | ND                  | ND                  | 3.24              | 7.36                | ≤2.0        |
| 锰, mg/L             | 0.17                | 0.32                | 2.20              | 2.73                | ≤1.5        |
| 氨氮, mg/L            | 1.82                | 1.91                | 5.54              | 2.87                | ≤1.5        |
| 细菌总数,<br>CFU/mL     | $2.4 \times 10^{3}$ | $1.9 \times 10^{2}$ | $5.3 \times 10^4$ | $2.8 \times 10^{3}$ | ≤1000       |
| 1, 2-二氯乙<br>烷, ug/L | 3.5                 | 3.3                 | 77.0              | ND                  | ≪40         |

表 4-1 地下水检测数据

| 续表 4-1 | 地下水检测数据 |
|--------|---------|
|--------|---------|

| 检测点位      | 罐区 2                | 苯酐生产装               | 苯酐生产                | 增塑剂生产             | Ⅳ类评价  |
|-----------|---------------------|---------------------|---------------------|-------------------|-------|
| 应测点型      | 5#                  | 置区 6#               | 装置区 7#              | 装置区 8#            | 标准    |
| 检测项目      | 检测结果                | 检测结果                | 检测结果                | 检测结果              |       |
| 铁, mg/L   | 4.07                | 1.73                | 2.08                | 2.58              | ≤2.0  |
| 锰, mg/L   | 1.77                | 0.62                | 1.68                | 3.09              | ≤1.5  |
| 耗氧量, mg/L | 10.1                | 8.1                 | 6.9                 | 3.8               | ≤10   |
| 氨氮, mg/L  | 4.51                | 4.41                | 3.01                | 1.64              | ≤1.5  |
| 细菌总数,     | $1.9 \times 10^{4}$ | $4.6 \times 10^{3}$ | $2.2 \times 10^{3}$ | $1.5 \times 10^4$ | ≤1000 |
| CFU/mL    | 1.9 × 10            | 4.0 × 10            | 2.2 × 10            | 1.5 × 10          | <1000 |

续表 4-1 地下水检测数据

| 检测点位      | 聚酯车间<br>区域 9# | 环氧树脂<br>区域 10# | 增塑剂生产<br>装置区 11# | 公用区 1<br>12# | IV类评价<br>标准 |
|-----------|---------------|----------------|------------------|--------------|-------------|
| 检测项目      | 检测结果          | 检测结果           | 检测结果             | 检测结果         | _           |
| 总硬度, mg/L | 478.9         | 693.2          | 491.5            | 547.2        | ≤650        |
| 氯化物, mg/L | 38            | 53             | 76               | 356          | €350        |

| 铁, mg/L           | ND   | 16.00               | 0.08                | ND                  | ≤2.0  |
|-------------------|------|---------------------|---------------------|---------------------|-------|
| 锰, mg/L           | 0.09 | 5.44                | 1.55                | ND                  | ≤1.5  |
| ——氨氮,mg/L         | 1.70 | 3.41                | 1.62                | 1.94                | ≤1.5  |
| 细菌总数,<br>CFU/mL   | 82   | $4.7 \times 10^{3}$ | $1.7 \times 10^{3}$ | $1.8 \times 10^{3}$ | ≤1000 |
| 1,2-二氯乙<br>烷,μg/L | 12.1 | 14.0                | 78.2                | 2.6                 | €40   |

续表 4-1 地下水检测数据

| 检测点位            | 公用区 2 13# | 危废库<br>14#          | 罐区3 15# | 稳定剂装<br>置 16#       | IV类评价<br>标准 |
|-----------------|-----------|---------------------|---------|---------------------|-------------|
| 检测项目            | 检测结果      | 检测结果                | 检测结果    | 检测结果                |             |
| 铁, mg/L         | ND        | 2.74                | ND      | 2.17                | ≤2.0        |
| 氨氮, mg/L        | 1.64      | 1.76                | 2.58    | 1.57                | ≤1.5        |
| 细菌总数,<br>CFU/mL | 76        | $1.5 \times 10^{3}$ | 52      | $1.7 \times 10^{3}$ | ≤1000       |

续表 4-1 地下水检测数据

| 检测点位            | 仓库 1<br>17#       | 仓库 1<br>18#         | 仓库 2 19#            | 停车场<br>20#        | IV类评价<br>标准 |
|-----------------|-------------------|---------------------|---------------------|-------------------|-------------|
| 检测项目            | 检测结果              | 检测结果                | 检测结果                | 检测结果              | _           |
| 溶解性总固<br>体,mg/L | 604               | 1736                | 391                 | 382               | ≤2000       |
| 铁, mg/L         | 2.90              | 18.52               | 1.12                | 1.28              | €2.0        |
| 锰, mg/L         | 3.01              | 3.87                | 1.05                | 1.05              | ≤1.5        |
| 耗氧量, mg/L       | 6.7               | 7.7                 | 7.5                 | 13.7              | ≤10         |
| 氨氮, mg/L        | 2.51              | 3.65                | 1.51                | 1.49              | ≤1.5        |
| 细菌总数,<br>CFU/mL | $1.5 \times 10^2$ | $1.5 \times 10^{3}$ | $1.2 \times 10^{2}$ | $3.0 \times 10^2$ | ≤1000       |

续表 4-1 地下水检测数据

| 检测点位     | 停车场 21# | 办公区 22# | Ⅳ类评价标准 |
|----------|---------|---------|--------|
| 检测项目     | 检测结果    | 检测结果    | _      |
| 铁, mg/L  | 4.10    | ND      | €2.0   |
| 锰, mg/L  | 4.48    | ND      | ≤1.5   |
| 氨氮, mg/L | 2.10    | 2.28    | ≤1.5   |

对照《地下水环境质量标准》(GB/T14848-2017)水质要求,上述表格中红色标记污染物为V类水质,其余物质达到IV类水质要求。

# 5 结论与建议

### 5.1 结论

根据《在产企业土壤及地下水自行监测技术指南(征求意见稿)》及《镇 江联成化学工业有限公司地块土壤与地下水环境现状调查评估报告》,制定 了监测方案。结合现场实际情况最终布设 28 个土壤采样点, 22 个地下水监 测井,对地块土壤和地下水样品进行了检测分析。

本次自行监测采集的 28 个土壤样品中,重金属类、半挥发性有机物、挥发性有机物项目均未超过《土壤环境质量 建设用地 土壤污染风险管控标准》(试行)的第二类用地的筛选值。

本次自行监测采集的 22 个地下水样品,主要有总硬度、铁、锰、氨氮、细菌总数、1,2-二氯乙烷、耗氧量、氯化物、溶解性总固体有个别点位达到了 V 类水水质,其余污染物指标达到 IV 类水水质标准要求。

### 5.2 建议

- (1)企业在生产经营过程中,加强环境质量管理,避免"跑冒滴漏"现象发生,杜绝污染,定期对厂区各装置区域、装卸区等区域进行污染排查,如发现防渗层存在开裂,应及时对防渗层区域进行修补,防止污染物进一步扩散和下渗;
- (2)业定期对该地块开展土壤和地下水监测工作,及时掌握全厂区土壤和地下水环境质量状况和变化趋势。